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Abstract

Many decision-makers in industry, government academia routinely make decisions whose
outcome depends on the evolution of software tdobparends. Even though the stakes of these
decisions are usually very high, decision makerstinely depend on expert opinions and
gualitative assessments to model the evolutiorofdivare technology. In this paper, we report
on our ongoing work to build quantitative modelgha# evolution of software technology trends.
In particular, we discuss how we took three treeghehdent evolutionary models and merged
them into a single (trend-independent) model.

1. Introduction

Many decision-makers in industry, government anadamia routinely make decisions whose
outcome depends on the evolution of software tdolgyotrends. For example, a corporate
manager may take decisions pertaining to the aglomti a particular technology, the adherence
to a particular standard, the selection of a paldic development environment, etc. A

government official may take decisions pertainiogrtandating a particular standard, adopting a
particular technology, or acquiring a particulabgct. An academic officeholder may take

decisions pertaining to curriculum content or tatfgrm adoption. All these decisions carry

important stakes for the organizations at handsamaetimes for the objects of the decisions; yet,
they are often made with relatively little hard alatvithout any duly validated models, relying

instead on expert opinions and qualitative assestsne

The work we present in this paper aims to developnttative models for the evolution of
software technology trends. As we envision théras¢ models should help us understand what
factors drive the evolution of a trend, and to wkatent. To this effect, we represent the
evolution of a trend by a set of relevant factims|uding time dependent and time independent
factors, use them to collect factual data aboubhczl trends, then use the data to derive some
statistical observations.

The history of software technology is replete wattamples where technology trends evolve in
unpredictable/ irrational ways, giving us ample ivadfon to develop quantitative models. For



the sake of argument, we consider the followingnam@s, taken from the rich history of
programming languages.

* Fortran has had much more success and a much degmect than Algol, a language
from the same generation (late fifties/ early &%}j which is much more structured,
much more orthogonal, and much better designedr(E&90).

« Pascal, a language that was designed by a loned3mfas a teaching tool in a first
programming course, was much more successful addahauch deeper impact than
PL1, a language of the same generation (mid todedies), that was developed and
promoted by IBM, one of the most influential orgeations in the computing field at the
time (Niklaus Wirth, 1975).

« The C programming language, a special purposeefsgsbriented) language developed
with limited ambitions (to accompany a nascent afeg system) by a lone researcher
has evolved into a major milestone in programmanglage design, influencing a wide
range of subsequent languages, including C++, ®jeddC, BitC, D, Java, JavaScript,
Perl, PHP, etc (Brian 1978).

» Despite being developed as part of a worldwide aditipn (in the late seventies),
despite embodying the most advanced concepts tfries (ADT’s, exception handling,
genericity, specification vs implementation, etahd despite enjoying the long term
backing of one of the most powerful governmentgaoizations in the world (the US
Department of Defense), Ada had very limited sue@esd made relatively little lasting
impact on the discipline of programming languagsigte or the discipline of software
engineering (Grady 1987).

» Despite being the focal point of a worldwide resbaeffort in fifth generation
computing (eighties and early nineties), despitasting significant attributes in terms of
ease of use, and despite tireless support from rgamgrnmental agencies worldwide,
Prolog had very limited success as a programminguage, and is used in precious few
applications (Michael 1994).

» Even though it was designed by a lone researcBea language to support a specific
project on a very specific computing devise (atsptdevice), Java has evolved into a
very widely used programming languages, that islyididopted as a teaching tool, and
is a virtual standards for web applications (Jo83)0

The history of operating systems is no less richamdoxes, with systems such as Unix, Linux
and DOS starting from relatively modest means tmbe great successes, whereas systems such
as Multics and OS 360 emerging with massive backimg influential organizations in industry,
government and academia, to end up with relatilrglg impact in the long range. A decision-
maker in industry, government, academia would bgifen for betting on the wrong horse when
the laws that determine success or failure are y®iarious: success arises in the most unlikely,
most modest quarters, and eludes the most likekt, fupported contenders (Johnston 2005).

The models we discuss in this paper are primaripirical, rather than analytical, hence
they will not give any insights into how these amdies came about. What our models try to do,
instead, is attempt to capture all the relevantofacthat determine the evolution of a software
technology trend, and attempt to derive evolutigriaws based on statistical observations.

In section 2 we briefly discuss alternative apphascto modeling software technology
evolution and outline the main attributes of therapch we propose. In section 3 we present the
empirical background of our project, and in secdone present our quantitative approach, along



with its preliminary results. In the conclusione wummarize and assess our main findings, then
outline directions of future research.

2. Approachesto Modeling Software Technology Trends

We distinguish, broadly, between two families ofpagaches to modeling the evolution of
software engineering trends; we study them belovyrin.

2.1. Top down Approach
The first approach we have considered can be desized as being analytical, and proceeding
top down. This approach breaks down the lifecyaflea product or idea into three partially

overlapping phases (Cowan et al. 2002): Resedrakep Technology phase, and Market phase.
We explore evolutionary models for each phase.
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Figurel: Generic Evolutionary Cycle. (Cowan et al. 2002)

* Research phase. To model this phase, we havedevadiresearch on epistemology
(Rogers 1995; Kuhn 1962) and tried to speciatife Software.

* Technology phase. To analyze this phase, we hamsidered models of technology
evolution and technology transfer (Gaines 1995;Ragn et al. 1989, Redwine et al.
1985).

« Market phase. To analyze this phase, we have demesl models of market trends, such
as theChasm Model(Moore 1999), theGold Rush Mode(McConnell 1999), and the
Technology Maturation ModéRedwine et al. 1985).

The X axis represents time, whereas the Y axisesmmts activities that must take place in
order for the trend to proceed through its evohdiy cycle. The various lags are the time
periods that various adoption processes take;dhHeus gaps/ chasms are the activities that must
take place in order for the trend to proceed swfollg. Some trends fail because the
corresponding chasms are never crossed. More gletaithis model can be found in (Cowan et
al. 2002).

2.2. Bottom Up Approach



To complement the insights gained from the top d@pproach, we have also considered a
bottom up empirical approach, which builds specifieolutionary models from empirical
historical data. To this effect we have consideredurn, three specific families of software
artifacts, namely

* Programming Languages.

e Operating Systems.

* Middleware Systems, which are software layers that serve as an inteangd
between systems software and an application. A camrapplication of
middleware is to allow programs written for accéssa particular database to
access other databases (Bai 2009).

To build a quantitative evolutionary model for tedamilies of artifacts, we proceed as follows:

e For each family (programming languages, operatiysjesns, middleware systems), we
define a sample of representative elements.

+ We define a set of intrinsic factors, which refldot technical attributes of each member
of the family. While the precise definition of #eefactors depends on the family, they all
revolve around the general themes of performansability, effectiveness, efficiency,
usefulness, generality, cost, etc.

« We define a set of time-dependent extrinsic factawhich reflect the evolving
environment in which the members of the family eedl. Whereas intrinsic factors
depend on the product family, extrinsic factors thie same for all families of product,
and include: institutional support which reflects how much support the software
technology/ trend is finding in academic instibmis and research laboratoriggjustrial
support which reflects the amount of support the softwarehnology is getting in
industry; governmental suppartwhich reflects whether or not and to what extérmt
software technology is supported by governmenggnaies;organizational support
which reflects the support of professional orgatidres for software technology; and
finally grassroots support which reflects the support of professionals prattitioners
for the software technology.

The intrinsic factors are used to capture therisid technical attributes of each artifact, and are
time-independent; as we discussed earlier, therfistf software technology is replete with
examples of trends that fail despite having exaeltechnical attributes, and artifacts that fail
despite being very mediocre. Hence there is mmrsutcess and failure than technical merit.
The extrinsic factors, which, by contrast with ingic factors, are dependent on time, are used
for two purposes:

« First to model the environment in which a trendless (how much support it gets from
the various quarters of the community of stakehsie

e Second to model multi-dimensional metrics of suscege do not say, this trend is
successful or is not successful. Rather, we pteakenvector of extrinsic factors of the
trend at a given date, and we let that vector spaaitself (anyone who sees the vector
of extrinsic factors can decide for herself/ hirhgdiether it represents a successful trend
or not, depending on the specific prioritizatidntlve extrinsic factors and the specific
standards applied on each extrinsic factor).

Using this quantitative information, we build sséttal models that take the intrinsic factors and
past extrinsic factors as independent variables thedpresent or future extrinsic factors as



dependent variables. These models allow us taqtrée evolution of a trend on the basis of its
intrinsic attributes and the historical evolutidrite extrinsic attributes.

3. Resear ch Background

3.1 Programming L anguages

To analyze the evolution of programming languages, have considered a sample of 17
programming languages, including: ADA, ALGOL, APBASIC, C, C++, COBOL, EIFFEL,
FORTRAN, JAVA, LISP, ML, MODULA, PASCAL, PROLOG, SdEME, and SMALLTALK.
The intrinsic factors we have defined for programgnilanguages include: Reliability,
Extensibility, Expressiveness, Generality, Orthagity, Machine independence, Efficiency,
Simplicity, Maintainability and Implementability. This work was completed in 2003 and
collected quantitative information on the extrinfctors for 1993, 1998, and 2003. A sample of
the results we obtain from our statistical analysigiven in Figure 2 (Chen 2005). The values
for 2008 were derived using the predictive model.
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Figure 2: Evolution of Grassroots support for programming languages.
Actual (1993-2003) and predicted (2008)

3.2. Operating Systems

To analyze the evolution of operating systems, weehconsidered a sample of 15 operating
systems, including: UNIX, Solaris/Sun OS, BSDs, H$indows, MS-DOS, MAC OS, Linux,
NetWare, HP-UX, GNU Hurd, IBM AlIX, Compag/DEC, VM3\Jultics, and OS360. The
intrinsic factors we have defined for operating tegss include: Security and Protection,
Reliability, Portability, Compatibility, OpennesBgsign, Scalability, Ease of learning, Ease of
use, Consistency of Interaction Protocols, Cost) GRnagement, Memory Management and 10
Management. This work was completed in 2004 antectgld quantitative information on the
extrinsic factors for 1997, 2000, and 2003. A gknof the results we obtain from our statistical
analysis is given in Figure 3 (Peng 2007). Theiesifor 2006 were derived using the predictive
model.
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Figure 3: Evolution of Grassroots support for operating systems:
Actuals (1997-2003) and Predicted (2006)

3.3 Middleware Systems

To analyze the evolution of middleware systems,haee considered a sample of 18
middleware systems, including:

ODBC and JDBC is a middleware that connects progra languages (Java, as
well as Windows based programming languages) tabdaes.

JavaBean is a middleware that allows programmeiisl Ibeusable application
blocks called components that can be deployed imetavork on any major
operating system platform.

EJB (Enterprise Java Bean), is a managed, sergercgmponent for modular
construction of enterprise applications.

COM/COM+/DCOM, is a middleware supported by Micrfisdhat provides
heterogeneity across languages on the Windows g system.

CORBA (Common Object Request Broker Architecturejs a middleware
produced and supported by the Object ManagemenugGibat allows remote
method invocations on objects; it offers heteroggnacross programming
language and vendor implementations.

Jini is an architecture for distributed computitigat addresses how to provide
object services to clients, and how these cliems &vailable services. A Jini
service may control a piece of hardware, usingléwa Native Interface (INI).
JMS (Java Message Service) , is a middleware ttoaides integration services
with existing messaging systems.

MSMQ is essentially a messaging protocol from Msofd that allows
applications running on disparate servers to comecaimin a failsafe manner.
MQSeries is an IBM software family whose components used to tie together
other software applications so that they can imterate.



* MTS, the Microsoft Transaction Server is a progtaat runs on a network server
and manages application and database transactioests on behalf of a client
computer user.

Dot NET, The Microsoft NET Framework is a softwa@mponent that can be
added to the Microsoft Windows operating systermprovides a large body of
pre-coded solutions to common program requiremeats] manages the
execution of programs written specifically for fih@mework.

e J2EE is an industrial standard /product initiatgcShin Microsystems. It specifies
a programming platform for developing and runningtrbuted multi-tiered
architecture Java applications, based largely odufan software components
running on a special server.

» JBoss Enterprise Middleware Suite (JEMS) is anrestide and scalable suite of
products for creating and deploying e-businessiegiins.

 The BEA WebLogic Platform which includes BEA Weblioderver®, BEA
WebLogic Portal™, BEA WebLogic Integration™, BEA Wlegic
Workshop™, BEA JRockit™, is an application platforauite that helps
developers to service-enable their applications.

* IBM WebSphere as a brand refers to a group of IBfwsare products. From a
technical perspective, WebSphere typically mears WebSphere Application
Server or WAS product . WAS provides a set olises , such as database
access, mail services and security services.

* Apache Geronimo is a middleware whose goal’s iprtmluce a server runtime
framework that pulls together the best Open Soaltegnatives to create runtimes
that meet the needs of developers and system &trators and a family of
products ranging from application development t@uld integration solutions to
identity management, collaboration, and businesdligence reporting .

The intrinsic factors we have defined for middlesvaystems include: Availability,

Security and Protection, Maintenance and managenkarformance, Interoperability,

Scalability, Support for existing applications, @8pported, Languages Supported,
Standard Support, Ease of learning, Ease of usperaflon Cost, Acquisition Cost,

Tools supporting development and management anddBreof applicability A sample

of the results we obtain from our statistical aradys given in Figure 4 (Bai 2009).
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Figure4: Evolution of institutional support from 2006 to 2010:
Actual Values (2004-2008) and Predicted Values (2010)

4. A Generic Evolutionary Model

Each of the models we have derived so far can bd tesunderstand the evolution of a specific
family of products (programming languages, opetptaystems, middleware systems). For
example, to chart the future evolution of a prograng language, we feed the values of its
intrinsic factors (simplicity, genericity, orthogality, machine-independence, expressiveness,
etc) along with the history of its extrinsic facofinstitutional support, governmental support,
industrial support, etc) into our model, and weidefuture predictions for the extrinsic factors
(how much future support the language will enjaynireach set of stakeholders). To chart the
future evolution of an operating system, we apply predictive model of operating systems,
using OS-specific intrinsic factors, such securigrtability, scalability, resource management,
etc. To chart the future evolution of a middlewasgstem, we apply the predictive model of
middleware systems, using middleware-specific nsid factors, such performance,
interoperability, OS supported, languages supppeade of learning, ease of use, tool support,
breadth of applicability, etc. How about if we @néerested in charting the future evolution of,
web browsers? Or database management systems?ro@armpming environments? Or malil
clients? We cannot keep developing evolutionarydef® for each conceivable family of
products.

What we have resolved to do instead is to use dtee wite have collected for these three distinct
models to build a generic model for a wider ranfjsastware products. To do so, we need to
define trend-independent intrinsic factors, and megptrend-specific intrinsic factors of the three
past studies onto these; then we can merge alldata sets and analyze them anew. This
approach, which we detail in this section, offesdwio advantages, but also carries some risk:

« The advantages include: First, that we obtain dehtihat can, in principle, be applied to
a broader range of software trends, since itsnsitrifactors are generic. Second, that we
now have a broader sample of data to use for atisttal analysis (50 elements in our
statistical sample).



The drawback of this resolution is that becausg #ne generic, the intrinsic factors carry
less information about the software products weagmdying them to.

Under the circumstances, this is a tradeoff wepagpared to make.

4.1. A Research Plan

In this section we discuss our plan to combinetiinee specific evolutionary models to derive a
generic model that can be applied to any softwachrtology. To this effect, we proceed as

follows:

1.

We define a set of generic intrinsic factors that end independent, i.e. applicable to
any software product/ technology. Whereas attebwuch as genericity, strong typing,
and expressiveness apply only to programming lagggiawhereas attributes such as
CPU management, I/O management, Deadlock manageapgty only to operating
systems; and whereas attributes such as interdlitgralscalability, and range of
supported languages apply only to middleware systéie attributes we choose for the
generic model apply to all software technologiesdpcts. These include: operational
usefulness, functional usefulness, usability, wditya and cost. Of course, these are not
as meaningful as the trend-specific factors, buttlie@ sake of broad applicability we
trade significance for generality. Also, for thake of being able to apply statistical
analysis, we ensure that all these factors aretifjiadte.

We map all trend specific factors onto trend-indwjent factors for any software
technology; these have been defined in such a wayp @ncompass all trend specific
factors.

From the mapping, of trend-specific factors to d-émdependent factors, we infer
normalized values for the generic intrinsic factofsall the products we have studied,
whether they are programming languages, operayistgisis, or middleware systems.

For extrinsic factors, we determine the periodigfyhistorical data, and we record the
values of all historical data on a common peridgjdby appropriate interpolations and
extrapolations. We have chosen the periodicitpedwo years; hence for each product
we record extrinsic factor values for the presemg years ago, four years ago and six
years ago.

We build a data table with all the individual pratk) along with numeric values for all
their intrinsic and extrinsic factors (which aresidical for all studies, including the
generic study).

We derive quantitative statistical models that teelthe current or future values of
extrinsic factors as a function of the intrinsicttars and the history of extrinsic factors.
To validate the generic predictive model that wéal) we are currently conducting an
independent empirical study on two technologieta Bases and web browsers, using the
generic intrinsic factors, the common extrinsictdas, and the periodicity determined in
step 4; and we use the results of this data tdataithe model derived in step 6.

At the time of this writing, step 7 is under wateps 1 through 6 are completed. The data table
alluded to in step 6 is available onlinenétp://techwatch.urpah.net/tecgeneric.xls




Tablel: Mapping Trend Specific Intrinsic Factors onto Generic Factors

MW. Intrinsic factors OS. Intrinsic PL. Intrinsic
factors factors
Attribute Attribute Sub-attributes Sub-attributes Sub-attributes
Names Names
Usefulness | Operational | Availability Reliability Reliability
Operational | Quality Security and | Security & Extensibility
Protection Protection Expressiveness
Maintenance
and
management
Performance
Versatility Generality OS supported Portability Generality
Languages Compatibility Orthogonality
Supported: Ope_nness Machine
Standard Design independence
Support: Scalability
Support for
existing
applications
Interoperability
Scalability
Usability Usability Ease of Ease of learning| Efficiency
learning Ease of use Simplicity
Ease of use Consistency of
Interaction
Protocols
Cost Cost Acquisition Cost
Cost
CPU
Management Maintainability
Operation Cost Memory
Management
IO Management
Usefulness Functionality Breadth of Range of Implementability
functional applicability Services
Tools Languages
supporting Support
deve'opment Distributed
and Compult<insg3 _
Network Services
management Deadlock
Management

4.2. Regression Model for Historical Trends
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We model the degree of success of a trend, notriyn@ber, but by a vector of extrinsic factors
that reflect its popularity with different quartes§ the technology scene: government agencies,
industrial organizations, academic institutionspfessional bodies, and end users (grassroots).
We anticipate that these factors influence eachratier time: a trend that is widely followed in
academia one year may spread to industry sevesiad Yater when students graduate and work in
industry; conversely, a trend that is widely follavin industry one year may find its way in
academic programs years later due to pressure ffegmuiters or from shifting job markets; a
trend that is widely popular with grassroots ptamtiers one year may gain industrial support
later through market pressure; etc. To model abk¢hcomplex interactions, we consider the
intrinsic factors of each trend, along with thettrg of its extrinsic factors, and we build a
regression model that derives the values of thensit factors of a trend at ye#r as a function

of the intrinsic factors of the trend as well as tiistory of the extrinsic factors of that trend in
past years. We build a linear regression equdto each extrinsic factor; the dependent
variable of each regression is the relevant extrifector, and the independent variables are the
(time-independent) intrinsic factors, as well as tiflstory of past extrinsic factors, of the trend.

We build this model by feeding it past and pressdtinsic data, and we use it as a predictive
tool by feeding it past and present data and gngriyion future data. Specifically, if we IE§ be
the vector of extrinsic factors of a trend at ygar be the vector of (time-independent) intrinsic

factors of the trend, then the regression functimvides us with the optimal values af , [,
¥, and 4 that minimize the error term in the equation:

Exooo=a*I + B* Expo7+ Y *E2005+ 8 Expozte .

Using this regression model, we can predict ther&bf extrinsic factors by applying the
model to past and present data, as shown below:

Exonn=a*l+ B* Exooet y*E2007+ 6 Exoos+&

wherea the parameter matrix for intrinsic factoy8, the parameter matrix for extrinsic
factors in 2009y theparameter matrix for extrinsic factors in 200he parameter
matrix for extrinsic factors in 2005 ared an error term.

5. Profiles of Success

When we use our predictive model to plot the futewvelution of a set of trends with
respect to a particular extrinsic attribute, owsuteis contingent on the future evolution
being a continuation of past evolution. But thipdthesis is not always borne out in
practice, where accidents (in the form of unan&tep trends, novel ideas, disruptive
events) can create singularities in the evolutipnamocess. To make our predictive
model immune to such discontinuities, we shy awaynf making predictions about
individual artifacts, and make predictions insteadthe profile of successful artifacts.
For example, we do not make statements such dava“will be adopted by 40% of
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grassroots in 2017 rather we will make statements such a3hé language that will be
most popular with grassroots users in 2011 will éndlae following attributes, ranked
from most important to least importédnt The latter statement is much safer than the
former, as it characterizes successful languageabdiy intrinsic attributes rather than to
identify them by name, and may include a languagenay not even know today.

How do we do this? We proceed in three steps:

* Quantify correlations between intrinsic factors and past extrinsic factors. For
each past year and each extrinsic factor, we campnot plot the correlation
between intrinsic factors and the selected extrifigctor at the selected year.
This correlation can be interpreted as the extnttiich the intrinsic factor was
important for success with respect to the extrifisator at the selected year; for
example (see Figure 5), in 2007, the correlatidwéen functional usefulness and
grassroots support was 0.45.

* Consider the past evolution of these correlations. This past evolution enables us
to determine, for each extrinsic factor, how irdiinfactors are correlated to
success or failure, and how this correlation isheag over time. For example
(see Figure 8), operational usefulness is inongasimportant to success with
respect to governmental support.

* Project this Evolution into the future. Use regression techniques to generate
regression formulas that can be applied to prddiare values of the correlation
between intrinsic values and extrinsic values iturk years. This allows us to
estimate how much importance each intrinsic fattas with respect to each
extrinsic factor in future years. For example, va® infer from Figure 6 that to
be successful with respect to institutional supgiortacademia), a trend needs to
have the following attributes, by order of decregsiimportance: cost,
operational usefulness, versatility, functionafutness, and usability.

This creates what we caftrofiles of Success.We have one such a profile for each
extrinsic factor, shown in the Figures below (Fegib to 9). Because ours is primarily
an empirical effort rather than an analytical ffowe do not provide an explanation for
the observation, but content ourselves with makingervations, upon checking that they
are statistically well-founded. Some of the oba&on sound counter-intuitive, and

indeed are hard to explain (for example, negatweetations between intrinsic factors

and extrinsic factors); but we argue that the phexita we describe are themselves
replete with paradoxes, as we discussed in thedattion. Be that as it may, we limit

ourselves, in interpreting these curves, to gensta@kements about broad trends. For
example, we use the curves to make statementsasuch

e In 2011, we expect intrinsic factors IF and IF’ be the two most important
factors of success with respect to extrinsic fa&tér

e In 2011, we expect intrinsic factors IF and IF’ lbe the two least important
factors of success with respect to extrinsic fa&tér

e In 2011, we expect intrinsic factor IF to be mamgortant than intrinsic factor
IF’ in ensuring success with respect to extrinadr EF.

» The importance of intrinsic factor IF with respéetthe success criterion defined
by extrinsic EF increases from 2003 to 2011.

12
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Figure5: Profiles of Successwith respect to Grassroots support

To be successful with grassroots (independent use2911, a software product has to have low
cost, high functionality, and high operationalibtites.

Intrinsic factors and Institutional Support correlation
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Figure6: Profiles of Successwith respect to I nstitutional support

To be successful in academia in 2011, a softwapeymt has to have low cost, high
operational attributes, and high versatility.
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Intrinsic factors and Industry Support correlation
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Figure 7: Profiles of Successwith respect to I ndustrial support

To be successful in industry in 2011, a softwaredpct has to have superior
functionality, low cost, and high versatility.

Intrinsic factors and Govermental support correlation
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Figure 8: Profiles of Successwith respect to Governmental support

To be successful in governmental agencies in 20%bftware product/ trend will have to
have high operational attributes, high versatibiyd high functionality.
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Intrinsic factors and Organizational support Correlation
0,5
014 B h 4* ‘
0,3 + e i _
02 —fi— Operational usefulness
< | Iy 4 —g—\/ersatilit
0,1 + 4 - vaN vay > | - Y
0 ‘ ; ‘ ‘ == Usability
0,1 2003 2005 2007 2009 2011 == Cost
021 | S I Functional usefulness
-0,3 + M s
-0,4

Figure 9: Profiles of Successwith respect to Organizational support

To be successful with professional bodies in 2@14oftware product/ trend will have to
have low cost, high versatility, and high operagioattributes (availability, reliability,
extensibility, etc).

To complement the insights provided by the studycoirelations between intrinsic
factors and extrinsic factors, we have also sot@hbmpute statistical regressions using
the extrinsic factors as dependent variables amdintrinsic factors as independent
variables. We use regression coefficients to assewhat extent a given intrinsic factor
contributes to the success of a trend with resjgeah extrinsic factor. By studying these
regressions for several time periods, we can pletdvolution of the impact that an
intrinsic factor has on an extrinsic factor. Nditthe regressions produced statistically
significant results, and those that did do not poadresults that are significantly distinct
from what we know from correlations.

6. Modeling Cross Influences

The evolution of software technology trends invehaeveral stakeholders, who influence each
other in a variety of ways, such as:

« An artifact that is successful in academia may fitsdway to industry when students
trained with the artifact graduate and move to #tdu(e.g. Pascal).

« An artifact that is successful in industry maydfiils way to academia through pressure
from recruiters and conditions of the job markeg (€, UML).

« An artifact that is successful with grassroots riag its way to industry when industrial
organizations see a potential market (e.g. Linux).

« An artifact that is successful with governmentafjamizations may find its way to
academia through funding incentives and fundingiot®ns (e.g. Ada).

In order to quantify these cross-influences, welyaeathe correlations between histories of
extrinsic factors and present values of other esittifactors. We review and comment on some
of these cross influences.

6.1 From Academiato Industry
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We consider correlations between past institutisoglport and current industry support, and find
the following correlation matrix:

Industrial Institutional, -2 Institutional, -4 Institutional, -6
Industrial 1.0000
Institutional, -2 0.8440 1.0000
Institutional, -4 0.7780 0.9750 1.0000
Institutional, -6 0.6678 0.8925 0.9666 1.0000

Table 2. Modeling Cross | nfluences From Academia to | ndustry

The correlation values in this matrix reflect thetemt to which past success in academia
(institutional -2, two years ago; institutional-#ur years ago, institutional-6, six years ago)
affects current success in industry. The monoiynif the first column of the table suggests that
the impact of academic success over industrialesscfades with time.

6.2 From Industry to Academia

For the sake of comparison with the previous sactige also consider correlations
between past industrial support and current irtgtital support; we find the following
correlation matrix:

I nstitutional Industrial, -2 Industrial, -4 Industrial, -6
I nstitutional 1.0000
Industrial, -2 0.6532 1.0000
Industrial, -4 0.6743 0.8851 1.0000
Industrial, -6 0.5785 0.7250 0.9584 1.0000

Table 3: Modeling Cross I nfluences From Industry to Academia

The correlation values in this matrix reflect thetemt to which past success in academia
(institutional -2, two years ago; institutional-®ur years ago, institutional-6, six years ago)
affects current success in industry. By contrasi the first column of Table 2, the first column
of this table is not monotonic; except for the tfiemtry, the column reaches its maximum for
industrial-4, which seems to suggest that the lemgttime that a successful trend in industry
takes to make its way to academia is around foarsye

This table also suggests, in combination with tfevipus table, that academia influences

industry more than the other way around, given tiatfirst column of table 2 has higher
values than the first column of table 3.

6.3 From Industry to Grassroots

We consider correlations between past industrippstt and current grassroots support,
and we find the following correlation table.

Grassroots Industrial, -2 Industrial, -4 Industrial, -6
Grassroots 1.0000
Industrial, -2 0.3757 1.0000
Industrial, -4 0.5026 0.8851 1.0000
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[ Industrial, -6 | 0.5006 | 0.7250 | 0.9584 | 1.0000 ]

Table 4: Moddling Cross | nfluences From I ndustry to Grassroots

There are no explicit mechanisms by which industmectly influences grassroots
choices; this may explain why the correlation wadfiin this matrix are significantly

lower than those we find between industry and acealeor between academia and
industry.

6.4 From Government to Academia

We consider correlations between past governmeugport and current institutional
support, and we find the following correlation &bl

I nstitutional Governmental, -2 | Governmental, -4 | Governmental, -6
I nstitutional 1.0000
Governmental, -2 0.7175 1.0000
Governmental, -4 0.6715 0.9941 1.0000
Governmental, -6 0.6343 0.9837 0.9971 1.0000

Table 5: Modeling Cross | nfluences From Government to Academia

This table shows some impact of government suppoiihdustrial support, perhaps due
to incentives and disincentives used by governnheg@ncies to promote or discourage
from technologies; the first column of this tabhewss that this impact wanes with time.

7. Conclusion

The evolution of software technology trends is notgsly difficult to model, leading
stakeholders and decision-makers to rely primawityintuition and expert judgment. In this
paper, we attempt to complement these approachbssame insights gained from collecting
factual data about actual trends over a periodnoé,tand from analyzing this data to derive
empirical evolutionary models.

We have used this model to provide answers to twadquestions:

» First, what characterizes successful trends offtitere? To answer this question,
we plot the evolution over time of the correlatibaetween intrinsic factors and
extrinsic factors, and perform a regression thiiwa us to predict what this
correlation will be in the future. Knowing the ocelation between a given
extrinsic factor and all the intrinsic factors al® to draw the profile of a
successful trend, where success is measured laxthesic factor in question.

» Second, how do various stakeholders of softwaréntdogy influence each
other’s choices? To answer this question, we compute correlatibesveen
various extrinsic factors and evolutionary histergg other extrinsic factors. The
analysis of these correlations informs us on tlie@énce that the success of trend
with one quarter has on its success with anotharteu
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These preliminary results provide a basis for antjtagive analysis of the evolution of
software technology trends.
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