
1

A Generic Evolutionary Model for Software Engineering Trends

Latifa Ben Arfa Rabai, Yan Zhi Bai, and Ali Mili
Institut Superieur de Gestion, Université de Tunis, Bardo 2000 Tunisia

New Jersey Institute of Technology, Newark NJ 07102, USA
Email contact: latifa.rabai@isg.rnu.tn

Keywords: Bottom Up Approach; Intrinsic factors; extrinsic factors; historical trends; software
technology trends; successful trends; quantitative models; Profiles of Success; Cross
Influences .

Abstract

 Many decision-makers in industry, government and academia routinely make decisions whose
outcome depends on the evolution of software technology trends. Even though the stakes of these
decisions are usually very high, decision makers routinely depend on expert opinions and
qualitative assessments to model the evolution of software technology. In this paper, we report
on our ongoing work to build quantitative models of the evolution of software technology trends.
In particular, we discuss how we took three trend-dependent evolutionary models and merged
them into a single (trend-independent) model.

1. Introduction

Many decision-makers in industry, government and academia routinely make decisions whose
outcome depends on the evolution of software technology trends. For example, a corporate
manager may take decisions pertaining to the adoption of a particular technology, the adherence
to a particular standard, the selection of a particular development environment, etc. A
government official may take decisions pertaining to mandating a particular standard, adopting a
particular technology, or acquiring a particular product. An academic officeholder may take
decisions pertaining to curriculum content or to platform adoption. All these decisions carry
important stakes for the organizations at hand and sometimes for the objects of the decisions; yet,
they are often made with relatively little hard data, without any duly validated models, relying
instead on expert opinions and qualitative assessments.

The work we present in this paper aims to develop quantitative models for the evolution of
software technology trends. As we envision them, these models should help us understand what
factors drive the evolution of a trend, and to what extent. To this effect, we represent the
evolution of a trend by a set of relevant factors, including time dependent and time independent
factors, use them to collect factual data about historical trends, then use the data to derive some
statistical observations.

The history of software technology is replete with examples where technology trends evolve in
unpredictable/ irrational ways, giving us ample motivation to develop quantitative models. For

2

the sake of argument, we consider the following anomalies, taken from the rich history of
programming languages.

• Fortran has had much more success and a much deeper impact than Algol, a language
from the same generation (late fifties/ early sixties), which is much more structured,
much more orthogonal, and much better designed (Etter 1990).

• Pascal, a language that was designed by a lone Professor as a teaching tool in a first
programming course, was much more successful and had a much deeper impact than
PL1, a language of the same generation (mid to late sixties), that was developed and
promoted by IBM, one of the most influential organizations in the computing field at the
time (Niklaus Wirth, 1975).

• The C programming language, a special purpose (systems oriented) language developed
with limited ambitions (to accompany a nascent operating system) by a lone researcher
has evolved into a major milestone in programming language design, influencing a wide
range of subsequent languages, including C++, C#, Object-C, BitC, D, Java, JavaScript,
Perl, PHP, etc (Brian 1978).

• Despite being developed as part of a worldwide competition (in the late seventies),
despite embodying the most advanced concepts of its time (ADT’s, exception handling,
genericity, specification vs implementation, etc), and despite enjoying the long term
backing of one of the most powerful governmental organizations in the world (the US
Department of Defense), Ada had very limited success and made relatively little lasting
impact on the discipline of programming language design or the discipline of software
engineering (Grady 1987).

• Despite being the focal point of a worldwide research effort in fifth generation
computing (eighties and early nineties), despite boasting significant attributes in terms of
ease of use, and despite tireless support from many governmental agencies worldwide,
Prolog had very limited success as a programming language, and is used in precious few
applications (Michael 1994).

• Even though it was designed by a lone researcher, as a language to support a specific
project on a very specific computing devise (a set-top device), Java has evolved into a
very widely used programming languages, that is widely adopted as a teaching tool, and
is a virtual standards for web applications (Jon 2005).

The history of operating systems is no less rich in paradoxes, with systems such as Unix, Linux
and DOS starting from relatively modest means to become great successes, whereas systems such
as Multics and OS 360 emerging with massive backing from influential organizations in industry,
government and academia, to end up with relatively little impact in the long range. A decision-
maker in industry, government, academia would be forgiven for betting on the wrong horse when
the laws that determine success or failure are so mysterious: success arises in the most unlikely,
most modest quarters, and eludes the most likely, best supported contenders (Johnston 2005).

 The models we discuss in this paper are primarily empirical, rather than analytical, hence
they will not give any insights into how these anomalies came about. What our models try to do,
instead, is attempt to capture all the relevant factors that determine the evolution of a software
technology trend, and attempt to derive evolutionary laws based on statistical observations.

In section 2 we briefly discuss alternative approaches to modeling software technology
evolution and outline the main attributes of the approach we propose. In section 3 we present the
empirical background of our project, and in section 4 we present our quantitative approach, along

3

with its preliminary results. In the conclusion, we summarize and assess our main findings, then
outline directions of future research.

2. Approaches to Modeling Software Technology Trends

We distinguish, broadly, between two families of approaches to modeling the evolution of
software engineering trends; we study them below, in turn.

2.1. Top down Approach

The first approach we have considered can be characterized as being analytical, and proceeding
top down. This approach breaks down the lifecycle of a product or idea into three partially
overlapping phases (Cowan et al. 2002): Research phase, Technology phase, and Market phase.
We explore evolutionary models for each phase.

Figure1: Generic Evolutionary Cycle. (Cowan et al. 2002)

• Research phase. To model this phase, we have considered research on epistemology

(Rogers 1995; Kuhn 1962) and tried to specialize it to Software.
• Technology phase. To analyze this phase, we have considered models of technology

evolution and technology transfer (Gaines 1995; Raghavan et al. 1989, Redwine et al.
1985).

• Market phase. To analyze this phase, we have considered models of market trends, such
as the Chasm Model (Moore 1999), the Gold Rush Model (McConnell 1999), and the
Technology Maturation Model (Redwine et al. 1985).

The X axis represents time, whereas the Y axis represents activities that must take place in

order for the trend to proceed through its evolutionary cycle. The various lags are the time
periods that various adoption processes take; the various gaps/ chasms are the activities that must
take place in order for the trend to proceed successfully. Some trends fail because the
corresponding chasms are never crossed. More details on this model can be found in (Cowan et
al. 2002).

2.2. Bottom Up Approach

4

To complement the insights gained from the top down approach, we have also considered a
bottom up empirical approach, which builds specific evolutionary models from empirical
historical data. To this effect we have considered, in turn, three specific families of software
artifacts, namely

• Programming Languages.
• Operating Systems.
• Middleware Systems, which are software layers that serve as an intermediary

between systems software and an application. A common application of
middleware is to allow programs written for access to a particular database to
access other databases (Bai 2009).

To build a quantitative evolutionary model for these families of artifacts, we proceed as follows:

• For each family (programming languages, operating systems, middleware systems), we
define a sample of representative elements.

• We define a set of intrinsic factors, which reflect the technical attributes of each member
of the family. While the precise definition of these factors depends on the family, they all
revolve around the general themes of performance, usability, effectiveness, efficiency,
usefulness, generality, cost, etc.

• We define a set of time-dependent extrinsic factors, which reflect the evolving
environment in which the members of the family evolved. Whereas intrinsic factors
depend on the product family, extrinsic factors are the same for all families of product,
and include: institutional support, which reflects how much support the software
technology/ trend is finding in academic institutions and research laboratories; industrial
support, which reflects the amount of support the software technology is getting in
industry; governmental support, which reflects whether or not and to what extent the
software technology is supported by governmental agencies; organizational support
which reflects the support of professional organizations for software technology; and
finally grassroots support, which reflects the support of professionals and practitioners
for the software technology.

The intrinsic factors are used to capture the intrinsic technical attributes of each artifact, and are
time-independent; as we discussed earlier, the history of software technology is replete with
examples of trends that fail despite having excellent technical attributes, and artifacts that fail
despite being very mediocre. Hence there is more to success and failure than technical merit.
The extrinsic factors, which, by contrast with intrinsic factors, are dependent on time, are used
for two purposes:

• First to model the environment in which a trend evolves (how much support it gets from
the various quarters of the community of stakeholders);

• Second to model multi-dimensional metrics of success; we do not say, this trend is
successful or is not successful. Rather, we present the vector of extrinsic factors of the
trend at a given date, and we let that vector speak for itself (anyone who sees the vector
of extrinsic factors can decide for herself/ himself whether it represents a successful trend
or not, depending on the specific prioritization of the extrinsic factors and the specific
standards applied on each extrinsic factor).

Using this quantitative information, we build statistical models that take the intrinsic factors and
past extrinsic factors as independent variables and the present or future extrinsic factors as

5

dependent variables. These models allow us to predict the evolution of a trend on the basis of its
intrinsic attributes and the historical evolution of its extrinsic attributes.

3. Research Background

3.1 Programming Languages

To analyze the evolution of programming languages, we have considered a sample of 17
programming languages, including: ADA, ALGOL, APL, BASIC, C, C++, COBOL, EIFFEL,
FORTRAN, JAVA, LISP, ML, MODULA, PASCAL, PROLOG, SCHEME, and SMALLTALK.
The intrinsic factors we have defined for programming languages include: Reliability,
Extensibility, Expressiveness, Generality, Orthogonality, Machine independence, Efficiency,
Simplicity, Maintainability and Implementability. This work was completed in 2003 and
collected quantitative information on the extrinsic factors for 1993, 1998, and 2003. A sample of
the results we obtain from our statistical analysis is given in Figure 2 (Chen 2005). The values
for 2008 were derived using the predictive model.

0,00

0,50

1,00

1,50

2,00

2,50

1993 1998 2003 2008

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL

SMALLTALK

Figure 2: Evolution of Grassroots support for programming languages:
Actual (1993-2003) and predicted (2008)

3.2. Operating Systems

To analyze the evolution of operating systems, we have considered a sample of 15 operating
systems, including: UNIX, Solaris/Sun OS, BSDs, OS/2, Windows, MS-DOS, MAC OS, Linux,
NetWare, HP-UX, GNU Hurd, IBM AIX, Compaq/DEC, VMS, Multics, and OS360. The
intrinsic factors we have defined for operating systems include: Security and Protection,
Reliability, Portability, Compatibility, Openness, Design, Scalability, Ease of learning, Ease of
use, Consistency of Interaction Protocols, Cost, CPU Management, Memory Management and IO
Management. This work was completed in 2004 and collected quantitative information on the
extrinsic factors for 1997, 2000, and 2003. A sample of the results we obtain from our statistical
analysis is given in Figure 3 (Peng 2007). The values for 2006 were derived using the predictive
model.

6

Grassroots

0

0,5

1

1,5

2

2,5

3

1997 2000 2003 2006

UNIX

Solaris/Sun OS

BSDs

OS/2

Window s

MAC OS

Linux

NetWare

HP-UX

GNU Hurd

IBM AIX

Compaq/DEC VMS

Figure 3: Evolution of Grassroots support for operating systems:

Actuals (1997-2003) and Predicted (2006)

3.3 Middleware Systems

To analyze the evolution of middleware systems, we have considered a sample of 18
middleware systems, including:

• ODBC and JDBC is a middleware that connects programming languages (Java, as
well as Windows based programming languages) to databases.

• JavaBean is a middleware that allows programmers build reusable application
blocks called components that can be deployed in a network on any major
operating system platform.

• EJB (Enterprise Java Bean), is a managed, server side component for modular
construction of enterprise applications.

• COM/COM+/DCOM, is a middleware supported by Microsoft, that provides
heterogeneity across languages on the Windows operating system.

• CORBA (Common Object Request Broker Architecture), is a middleware
produced and supported by the Object Management Group, that allows remote
method invocations on objects; it offers heterogeneity across programming
language and vendor implementations.

• Jini is an architecture for distributed computing, that addresses how to provide
object services to clients, and how these clients find available services. A Jini
service may control a piece of hardware, using the Java Native Interface (JNI).

• JMS (Java Message Service) , is a middleware that provides integration services
with existing messaging systems.

• MSMQ is essentially a messaging protocol from Microsoft that allows
applications running on disparate servers to communicate in a failsafe manner.

• MQSeries is an IBM software family whose components are used to tie together
other software applications so that they can interoperate.

7

• MTS, the Microsoft Transaction Server is a program that runs on a network server
and manages application and database transaction requests on behalf of a client
computer user.

• Dot NET, The Microsoft NET Framework is a software component that can be
added to the Microsoft Windows operating system. It provides a large body of
pre-coded solutions to common program requirements, and manages the
execution of programs written specifically for the framework.

• J2EE is an industrial standard /product initiated by Sun Microsystems. It specifies
a programming platform for developing and running distributed multi-tiered
architecture Java applications, based largely on modular software components
running on a special server.

• JBoss Enterprise Middleware Suite (JEMS) is an extensible and scalable suite of
products for creating and deploying e-business applications.

• The BEA WebLogic Platform which includes BEA WebLogic Server®, BEA
WebLogic Portal™, BEA WebLogic Integration™, BEA WebLogic
Workshop™, BEA JRockit™, is an application platform suite that helps
developers to service-enable their applications.

• IBM WebSphere as a brand refers to a group of IBM software products. From a
technical perspective, WebSphere typically means the WebSphere Application
Server or WAS product . WAS provides a set of services , such as database
access, mail services and security services.

• Apache Geronimo is a middleware whose goal’s is to produce a server runtime
framework that pulls together the best Open Source alternatives to create runtimes
that meet the needs of developers and system administrators and a family of
products ranging from application development tools and integration solutions to
identity management, collaboration, and business intelligence reporting .

The intrinsic factors we have defined for middleware systems include: Availability,
Security and Protection, Maintenance and management, Performance, Interoperability,
Scalability, Support for existing applications, OS supported, Languages Supported,
Standard Support, Ease of learning, Ease of use, Operation Cost, Acquisition Cost,
Tools supporting development and management and Breadth of applicability. A sample
of the results we obtain from our statistical analysis is given in Figure 4 (Bai 2009).

8

0

0,5

1

1,5

2

2,5

3

2004 2006 2008 2010

ODBC

JDBC

JMS

JavaBean

J2EE

COM

MS.NET

Geronimo

Fusion

Figure 4: Evolution of institutional support from 2006 to 2010:
Actual Values (2004-2008) and Predicted Values (2010)

4. A Generic Evolutionary Model

Each of the models we have derived so far can be used to understand the evolution of a specific
family of products (programming languages, operating systems, middleware systems). For
example, to chart the future evolution of a programming language, we feed the values of its
intrinsic factors (simplicity, genericity, orthogonality, machine-independence, expressiveness,
etc) along with the history of its extrinsic factors (institutional support, governmental support,
industrial support, etc) into our model, and we derive future predictions for the extrinsic factors
(how much future support the language will enjoy from each set of stakeholders). To chart the
future evolution of an operating system, we apply the predictive model of operating systems,
using OS-specific intrinsic factors, such security, portability, scalability, resource management,
etc. To chart the future evolution of a middleware system, we apply the predictive model of
middleware systems, using middleware-specific intrinsic factors, such performance,
interoperability, OS supported, languages supported, ease of learning, ease of use, tool support,
breadth of applicability, etc. How about if we are interested in charting the future evolution of,
web browsers? Or database management systems? Or programming environments? Or mail
clients? We cannot keep developing evolutionary models for each conceivable family of
products.

What we have resolved to do instead is to use the data we have collected for these three distinct
models to build a generic model for a wider range of software products. To do so, we need to
define trend-independent intrinsic factors, and map the trend-specific intrinsic factors of the three
past studies onto these; then we can merge all our data sets and analyze them anew. This
approach, which we detail in this section, offers us two advantages, but also carries some risk:

• The advantages include: First, that we obtain a model that can, in principle, be applied to
a broader range of software trends, since its intrinsic factors are generic. Second, that we
now have a broader sample of data to use for our statistical analysis (50 elements in our
statistical sample).

9

• The drawback of this resolution is that because they are generic, the intrinsic factors carry
less information about the software products we are applying them to.

Under the circumstances, this is a tradeoff we are prepared to make.

4.1. A Research Plan

In this section we discuss our plan to combine the three specific evolutionary models to derive a
generic model that can be applied to any software technology. To this effect, we proceed as
follows:

1. We define a set of generic intrinsic factors that are trend independent, i.e. applicable to
any software product/ technology. Whereas attributes such as genericity, strong typing,
and expressiveness apply only to programming languages; whereas attributes such as
CPU management, I/O management, Deadlock management apply only to operating
systems; and whereas attributes such as interoperability, scalability, and range of
supported languages apply only to middleware systems; the attributes we choose for the
generic model apply to all software technologies/ products. These include: operational
usefulness, functional usefulness, usability, versatility, and cost. Of course, these are not
as meaningful as the trend-specific factors, but for the sake of broad applicability we
trade significance for generality. Also, for the sake of being able to apply statistical
analysis, we ensure that all these factors are quantifiable.

2. We map all trend specific factors onto trend-independent factors for any software
technology; these have been defined in such a way as to encompass all trend specific
factors.

3. From the mapping, of trend-specific factors to trend-independent factors, we infer
normalized values for the generic intrinsic factors of all the products we have studied,
whether they are programming languages, operating systems, or middleware systems.

4. For extrinsic factors, we determine the periodicity of historical data, and we record the
values of all historical data on a common periodicity, by appropriate interpolations and
extrapolations. We have chosen the periodicity to be two years; hence for each product
we record extrinsic factor values for the present, two years ago, four years ago and six
years ago.

5. We build a data table with all the individual products, along with numeric values for all
their intrinsic and extrinsic factors (which are identical for all studies, including the
generic study).

6. We derive quantitative statistical models that relate the current or future values of
extrinsic factors as a function of the intrinsic factors and the history of extrinsic factors.

7. To validate the generic predictive model that we obtain, we are currently conducting an
independent empirical study on two technologies, data bases and web browsers, using the
generic intrinsic factors, the common extrinsic factors, and the periodicity determined in
step 4; and we use the results of this data to validate the model derived in step 6.

At the time of this writing, step 7 is under way, steps 1 through 6 are completed. The data table
alluded to in step 6 is available online at http://techwatch.urpah.net/tecgeneric.xls.

10

Table1: Mapping Trend Specific Intrinsic Factors onto Generic Factors

4.2. Regression Model for Historical Trends

 MW. Intrinsic factors OS. Intrinsic
factors

PL. Intrinsic
factors

Attribute
Names

Attribute
Names

Sub-attributes Sub-attributes Sub-attributes

Usefulness
Operational

Operational
Quality

Availability
Security and
Protection
Maintenance
and
management
Performance

Reliability
Security &
Protection

Reliability
Extensibility
Expressiveness

Versatility Generality

OS supported
Languages
Supported:
Standard
Support:
Support for
existing
applications
Interoperability
Scalability

Portability
Compatibility
Openness
Design
Scalability

Generality
Orthogonality
Machine
independence

Usability Usability Ease of
learning
Ease of use

Ease of learning
Ease of use
Consistency of
Interaction
Protocols

Efficiency
Simplicity

Cost

Cost Acquisition
Cost

Operation Cost

Cost

CPU
Management
Memory
Management
IO Management

Maintainability

Usefulness
functional

Functionality Breadth of
applicability
Tools
supporting
development
and
management

Range of
Services
 Languages
Support
Distributed
Computing
Network Services
Deadlock
Management

Implementability

11

We model the degree of success of a trend, not by a number, but by a vector of extrinsic factors
that reflect its popularity with different quarters of the technology scene: government agencies,
industrial organizations, academic institutions, professional bodies, and end users (grassroots).
We anticipate that these factors influence each other over time: a trend that is widely followed in
academia one year may spread to industry several years later when students graduate and work in
industry; conversely, a trend that is widely followed in industry one year may find its way in
academic programs years later due to pressure from recruiters or from shifting job markets; a
trend that is widely popular with grassroots practitioners one year may gain industrial support
later through market pressure; etc. To model all these complex interactions, we consider the
intrinsic factors of each trend, along with the history of its extrinsic factors, and we build a
regression model that derives the values of the extrinsic factors of a trend at year Y as a function
of the intrinsic factors of the trend as well as the history of the extrinsic factors of that trend in
past years. We build a linear regression equation for each extrinsic factor; the dependent
variable of each regression is the relevant extrinsic factor, and the independent variables are the
(time-independent) intrinsic factors, as well as the history of past extrinsic factors, of the trend.

We build this model by feeding it past and present extrinsic data, and we use it as a predictive
tool by feeding it past and present data and querying it on future data. Specifically, if we let Ey be
the vector of extrinsic factors of a trend at year y, I be the vector of (time-independent) intrinsic
factors of the trend, then the regression function provides us with the optimal values of α , β ,
γ , and δ that minimize the error term ε in the equation:

E2009 =α *I + β * E2007 + γ *E2005 + δ E2003 +ε .

E2011 =α *I + β * E2009 + γ *E2007 + δ E2005 +ε

5. Profiles of Success

When we use our predictive model to plot the future evolution of a set of trends with
respect to a particular extrinsic attribute, our result is contingent on the future evolution
being a continuation of past evolution. But this hypothesis is not always borne out in
practice, where accidents (in the form of unanticipated trends, novel ideas, disruptive
events) can create singularities in the evolutionary process. To make our predictive
model immune to such discontinuities, we shy away from making predictions about
individual artifacts, and make predictions instead on the profile of successful artifacts.
For example, we do not make statements such as: “Java will be adopted by 40% of

Using this regression model, we can predict the future of extrinsic factors by applying the
model to past and present data, as shown below:

where α the parameter matrix for intrinsic factors, β the parameter matrix for extrinsic
factors in 2009, γ the parameter matrix for extrinsic factors in 2007, δ the parameter
matrix for extrinsic factors in 2005 and ε an error term.

12

grassroots in 2011”; rather we will make statements such as: “The language that will be
most popular with grassroots users in 2011 will have the following attributes, ranked
from most important to least important”. The latter statement is much safer than the
former, as it characterizes successful languages by their intrinsic attributes rather than to
identify them by name, and may include a language we may not even know today.

 How do we do this? We proceed in three steps:

• Quantify correlations between intrinsic factors and past extrinsic factors. For
each past year and each extrinsic factor, we compute and plot the correlation
between intrinsic factors and the selected extrinsic factor at the selected year.
This correlation can be interpreted as the extent to which the intrinsic factor was
important for success with respect to the extrinsic factor at the selected year; for
example (see Figure 5), in 2007, the correlation between functional usefulness and
grassroots support was 0.45.

• Consider the past evolution of these correlations. This past evolution enables us
to determine, for each extrinsic factor, how intrinsic factors are correlated to
success or failure, and how this correlation is evolving over time. For example
(see Figure 8), operational usefulness is increasingly important to success with
respect to governmental support.

• Project this Evolution into the future. Use regression techniques to generate
regression formulas that can be applied to predict future values of the correlation
between intrinsic values and extrinsic values in future years. This allows us to
estimate how much importance each intrinsic factor has with respect to each
extrinsic factor in future years. For example, we can infer from Figure 6 that to
be successful with respect to institutional support (in academia), a trend needs to
have the following attributes, by order of decreasing importance: cost,
operational usefulness, versatility, functional usefulness, and usability.

This creates what we call Profiles of Success. We have one such a profile for each
extrinsic factor, shown in the Figures below (Figures 5 to 9). Because ours is primarily
an empirical effort rather than an analytical effort, we do not provide an explanation for
the observation, but content ourselves with making observations, upon checking that they
are statistically well-founded. Some of the observation sound counter-intuitive, and
indeed are hard to explain (for example, negative correlations between intrinsic factors
and extrinsic factors); but we argue that the phenomena we describe are themselves
replete with paradoxes, as we discussed in the introduction. Be that as it may, we limit
ourselves, in interpreting these curves, to general statements about broad trends. For
example, we use the curves to make statements such as:

• In 2011, we expect intrinsic factors IF and IF’ to be the two most important
factors of success with respect to extrinsic factor EF.

• In 2011, we expect intrinsic factors IF and IF’ to be the two least important
factors of success with respect to extrinsic factor EF.

• In 2011, we expect intrinsic factor IF to be more important than intrinsic factor
IF’ in ensuring success with respect to extrinsic factor EF.

• The importance of intrinsic factor IF with respect to the success criterion defined
by extrinsic EF increases from 2003 to 2011.

13

Intrinsic factors and Grassroots support correlation

-0,4
-0,3

-0,2
-0,1

0
0,1
0,2

0,3
0,4

0,5
0,6

2003 2005 2007 2009 2011

Operational usefullsess

Versatility

usability

Cost

Functionnal usefulness

Figure 5: Profiles of Success with respect to Grassroots support

To be successful with grassroots (independent users) in 2011, a software product has to have low
cost, high functionality, and high operational attributes.

Intrinsic factors and Institutional Support correlation

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

2003 2005 2007 2009 2011

Oprational usefulness

Versatility

Usability

Cost

Functional usefulness

Figure 6: Profiles of Success with respect to Institutional support

To be successful in academia in 2011, a software product has to have low cost, high
operational attributes, and high versatility.

14

Intrinsic factors and Industry Support correlation

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

2003 2005 2007 2009 2011

Operational usefulness

Versatility

Usability

Cost

Functional usefulness

Figure 7: Profiles of Success with respect to Industrial support

To be successful in industry in 2011, a software product has to have superior
functionality, low cost, and high versatility.

Intrinsic factors and Govermental support correlation

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

2003 2005 2007 2009 2011

Operational usefulness

Versatility

Usability

Cost

Functional usefulness

Figure 8: Profiles of Success with respect to Governmental support

To be successful in governmental agencies in 2011, a software product/ trend will have to
have high operational attributes, high versatility, and high functionality.

15

Intrinsic factors and Organizational support Correlation

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

2003 2005 2007 2009 2011

Operational usefulness

Versatility

Usability

Cost

Functional usefulness

Figure 9: Profiles of Success with respect to Organizational support

To be successful with professional bodies in 2011, a software product/ trend will have to
have low cost, high versatility, and high operational attributes (availability, reliability,
extensibility, etc).

To complement the insights provided by the study of correlations between intrinsic
factors and extrinsic factors, we have also sought to compute statistical regressions using
the extrinsic factors as dependent variables and the intrinsic factors as independent
variables. We use regression coefficients to assess to what extent a given intrinsic factor
contributes to the success of a trend with respect to an extrinsic factor. By studying these
regressions for several time periods, we can plot the evolution of the impact that an
intrinsic factor has on an extrinsic factor. Not all the regressions produced statistically
significant results, and those that did do not produce results that are significantly distinct
from what we know from correlations.

6. Modeling Cross Influences

The evolution of software technology trends involves several stakeholders, who influence each
other in a variety of ways, such as:

• An artifact that is successful in academia may find its way to industry when students
trained with the artifact graduate and move to industry (e.g. Pascal).

• An artifact that is successful in industry may find its way to academia through pressure
from recruiters and conditions of the job market (e.g. C, UML).

• An artifact that is successful with grassroots may find its way to industry when industrial
organizations see a potential market (e.g. Linux).

• An artifact that is successful with governmental organizations may find its way to
academia through funding incentives and funding restrictions (e.g. Ada).

In order to quantify these cross-influences, we analyze the correlations between histories of
extrinsic factors and present values of other extrinsic factors. We review and comment on some
of these cross influences.

6.1 From Academia to Industry

16

We consider correlations between past institutional support and current industry support, and find
the following correlation matrix:

 Industrial Institutional, -2 Institutional, -4 Institutional, -6
Industrial 1.0000
Institutional, -2 0.8440 1.0000
Institutional, -4 0.7780 0.9750 1.0000
Institutional, -6 0.6678 0.8925 0.9666 1.0000

Table 2: Modeling Cross Influences From Academia to Industry

The correlation values in this matrix reflect the extent to which past success in academia
(institutional -2, two years ago; institutional-4, four years ago, institutional-6, six years ago)
affects current success in industry. The monotonicity of the first column of the table suggests that
the impact of academic success over industrial success fades with time.

6.2 From Industry to Academia

For the sake of comparison with the previous section, we also consider correlations
between past industrial support and current institutional support; we find the following
correlation matrix:

 Institutional Industrial, -2 Industrial, -4 Industrial, -6
Institutional 1.0000
Industrial, -2 0.6532 1.0000
Industrial, -4 0.6743 0.8851 1.0000
Industrial, -6 0.5785 0.7250 0.9584 1.0000

Table 3: Modeling Cross Influences From Industry to Academia

The correlation values in this matrix reflect the extent to which past success in academia
(institutional -2, two years ago; institutional-4, four years ago, institutional-6, six years ago)
affects current success in industry. By contrast with the first column of Table 2, the first column
of this table is not monotonic; except for the first entry, the column reaches its maximum for
industrial-4, which seems to suggest that the length of time that a successful trend in industry
takes to make its way to academia is around four years..

This table also suggests, in combination with the previous table, that academia influences
industry more than the other way around, given that the first column of table 2 has higher
values than the first column of table 3.

6.3 From Industry to Grassroots

We consider correlations between past industrial support and current grassroots support,
and we find the following correlation table.

 Grassroots Industrial, -2 Industrial, -4 Industrial, -6
Grassroots 1.0000
Industrial, -2 0.3757 1.0000
Industrial, -4 0.5026 0.8851 1.0000

17

Industrial, -6 0.5006 0.7250 0.9584 1.0000
Table 4: Modeling Cross Influences From Industry to Grassroots

There are no explicit mechanisms by which industry directly influences grassroots
choices; this may explain why the correlation we find in this matrix are significantly
lower than those we find between industry and academia, or between academia and
industry.

6.4 From Government to Academia

We consider correlations between past governmental support and current institutional
support, and we find the following correlation table.

 Institutional Governmental, -2 Governmental, -4 Governmental, -6
Institutional 1.0000
Governmental, -2 0.7175 1.0000
Governmental, -4 0.6715 0.9941 1.0000
Governmental, -6 0.6343 0.9837 0.9971 1.0000

Table 5: Modeling Cross Influences From Government to Academia

This table shows some impact of government support on industrial support, perhaps due
to incentives and disincentives used by governmental agencies to promote or discourage
from technologies; the first column of this table shows that this impact wanes with time.

7. Conclusion

The evolution of software technology trends is notoriously difficult to model, leading
stakeholders and decision-makers to rely primarily on intuition and expert judgment. In this
paper, we attempt to complement these approaches with some insights gained from collecting
factual data about actual trends over a period of time, and from analyzing this data to derive
empirical evolutionary models.

We have used this model to provide answers to two broad questions:

• First, what characterizes successful trends of the future? To answer this question,
we plot the evolution over time of the correlation between intrinsic factors and
extrinsic factors, and perform a regression that allows us to predict what this
correlation will be in the future. Knowing the correlation between a given
extrinsic factor and all the intrinsic factors allows to draw the profile of a
successful trend, where success is measured by the extrinsic factor in question.

• Second, how do various stakeholders of software technology influence each
other’s choices? To answer this question, we compute correlations between
various extrinsic factors and evolutionary histories of other extrinsic factors. The
analysis of these correlations informs us on the influence that the success of trend
with one quarter has on its success with another quarter.

18

These preliminary results provide a basis for a quantitative analysis of the evolution of
software technology trends.

REFERENCES

Bai, Y.Z., 2009. Modeling the Evolution of Middleware Systems. Tech Report. New Jersey
Institute of Technology. 2009.

Brian Kernighan, Dennis Ritchie: The C Programming Language. 1st, Prentice Hall 1978; ISBN
0-13-110163-3. Pre-ANSI C.

Etter, D. M.., 1990. Structured FORTRAN 77 for Engineers and Scientists (3rd ed.). The
Benjamin/Cummings Publishing Company, Inc. ISBN 0-8053-0051-1.

Chen, Y. F., Dios, R., Mili, A., Wu, L. and Wang, K.F. 2005. Programming Language Trends:
An Empirical Study. IEEE Software. 2005.

Cowan Robert D., Mili, A., Hany, H., Ammar, A., McKendall Jr., Yang, L., Chen, D. and

Spencer, T. 2002. Software Engineering Technology Watch. IEEE Software 19(4): 123-129
(2002).

Gaines, B. 1995. Modeling and Forecasting the Information Sciences. University of Calgary,

Alberta.

Grady Booch. 1987. SOFTWARE ENGINEERING WITH Ada, California: The

Benjamin/Cummings Publishing Company, Inc., 1987. ISBN 0-8053-0604-8

Johnston (April 1, 2005). "VSE: A Look at the Past 40 Years". Z/Journal (Thomas

Communications, Inc.) (April/May 2005).

Jon Byous, 2005. Java technology: The early years. Sun Developer Network, no date [ca. 1998].

Retrieved April 22, 2005.

Kernighan, Dennis M. Ritchie. 1988. The C Programming Language (2nd ed.). Englewood

Cliffs, NJ: Prentice Hall .

Kuhn, Th. S. 1962. Structure of Scientific Revolution. University of Chicago Press.

Michael A. Covington. 1994. Natural Language Processing for Prolog Programmers, ISBN 0-

13-629213-5

Moore Geoffrey A. 1999. Crossing the Chasm. Harper Business.

McConnell, S. 1999. After the Gold Rush. Microsoft Press.

Niklaus Wirth: Algorithms + Data Structures = Programs. Prentice-Hall, 1975, ISBN 0-13-

022418-9.

19

Peng, Y., Li, F. and Mili, A. 2007. Modeling the evolution of operating systems: An empirical
study. Journal of Systems and Software. 80(1): 1-15.

Raghavan, S. and Chand, D. 1989. Diffusing Software Engineering Methods. IEEE Software, pp

81-90, July.

Redwine Jr., Samuel, T. and Riddle William E. 1985. Software Technology Maturation. ICSE .

pp189-200.

 Rogers, E.M. 1995. The Diffusion of Innovations. 4th ed. The Free Press :New York, NY.

