
Program Slicing

David W. Binkley

Keith Brian Gallagher

A hundred times every day, I remind myself that my inner and outer life depends

on the labors of other men, living and dead, and that I must exert myself in order

to give in the measure as I have received and am still receiving.

A. Einstein

1 Introduction

At the �fteenth International Conference on Software Engineering (ICSE), in 1993, Mark Weiser

received recognition for the best paper at the �fth ICSE. Weiser reported that \Program

Slicing"[94], the conference paper, and its journal incarnation of the same name[97], were cited

about 10 times a year from 1984 to 1989 and about 20 times a year in 1990 and 1991. Our

subsequent search of the \Science Citation Index" found 9 citations in 1992; 9 citations in 1993;

and 15 citations in 1994. This is clearly a lower bound. Our bibliography of 94 items (91,

excluding Weiser's original work) has only 12 that do not cite it, 5 of which were published

prior to the original paper. The references included universities in 10 countries and 8 industrial

laboratories. Since so many researchers and practitioners have been citing this seminal work,

herein we attempt to collate, summarize and organize the edi�ce of results that have followed.

Program slicing is a decomposition technique that extracts from program statements rele-

vant to a particular computation. Informally, a slice provides the answer to the question \What

program statements potentially a�ect the computation of variable v at statement s?" An ob-

server viewing the execution of a program and its slice cannot determine which is which when

attention if focused on statement s. It is as if the observer has a window through which only

part of the program state can be seen as illustrated by the \clear window" in Figure 1.

The utility and power of program slicing comes from the ability to assist in tedious and

error prone tasks such as program debugging [1, 50, 54, 64, 65, 66, 88, 95], testing [3, 11,

17, 20, 31, 51, 54, 57, 87], parallelization [23, 96], integration [82, 43, 80, 81, 83], software

safety [33], understanding [24, 56, 69, 75], software maintenance [32, 58, 70, 74, 77, 78], and

Figure 1: The Programmer's View of a Slice

software metrics [62, 63, 72, 71]. Slicing does this by extracting an algorithmwhose computation

may be scattered through out a program from intervening irrelevant statements. Consequently, it

should be easier for a programmer interested in a subset of the program's behavior to understand

the slice.

1.1 A Brief History

This section provides a brief history of program slicing and introduces the principal terminology.

A slice is taken with respect to a slicing criterion <s; v>, which speci�es a location (statement

s) and a variable (v). This can be easily extended to slicing with respect to a collection of

locations and a collection of variables at each location by taking the union of the individual

slices. However, to simplify the exposition, we present de�nitions for the single statement and

single variable case.

Program slices, as originally introduced by Weiser [93, 94, 97], are now called executable

backward static slices. Executable because the slice is required to be an executable program.

Backwards because of the direction edges are traversed when the slice is computed using a

dependence graph. And �nally, static because they are computed as the solution to a static

analysis problem (i.e., without considering the programs input).

Weiser's requirement that a slice be executable provided an empirical validation of the con-

cept. Although this seems reasonable, many applications of program slicing (e.g., debugging)

do not require executable slices. This issue is considered in Section 2.

Weiser originally used a control-
ow graph as an intermediate representation for his slicing

2

algorithm. Ottenstein et al. [26, 73] later noted that backward slices could be e�ciently com-

puted using the program dependence graph as an intermediate representation by traversing the

dependence edges backwards (from target to source). This observation was pursued vigorously

and rigorously by Horwitz, et al. [40, 41, 42, 43, 44, 46, 47, 48, 82, 83, 86], who introduced

the notion of forward slicing in [48]. Informally, a forward slice answers the question \What

statements are a�ected by the value of variable v at statement s?"

Finally, Korel and Laski introduced the notion of dynamic slicing [53, 55]: a slice com-

puted for a particular �xed input. The availability of run-time information makes dynamic

slices smaller than static slices, but limits there applicability to that particular input. As with

Weiser's algorithm, Korel and Laski's algorithm use a control-
ow graph as an intermediate

representation. Agrawal and Horgan later presented a dynamic slicing algorithm that used the

program dependence graph as an intermediate representation [5, 6].

This chapter is organized into three major sections. Section 2 discusses static slicing as a

data
ow problem and as a graph reachability problem; then discusses dynamic slicing as a data

ow problem and as a graph reachability problem; and closes with a collection of alternative

methods for computing slices. The third section looks at applications of the idea of program

slicing, without regard to any particular method of computing the slice.

2 Computing Slices

The following terminology is in this section to discuss the computation of slices.

De�nition 1 Graph. A directed graph G is a set of nodes N and a set of edges E � N �N .

For edge (n;m) 2 E, m is an immediate successor of n and n is an immediate predecessor of

n. G contains two special nodes, ninitial, which has no predecessors, and nfinal, which has no

successors. Furthermore, there is a path from ninitial to every node in G and a path from nfinal
to every node in G�1, the inverse graph of G.

De�nition 2 Control Flow Graph. A control
ow graph for program P is a graph in which

each node is associated with a statement from P and the edges represent the
ow of control in P .

Let V be the set of variables in P . With each node n (i.e., each statement in the program and

node in the graph) associate two sets: REF (n), the set of variables whose values are referenced

at n, and DEF (n), the set of variables whose values are de�ned at n.

De�nition 3 Program Slice. For statement s and variable v, the slice of program P with

respect to the slicing criterion < s; v > includes only those statements of P needed to capture

the behavior of v at s.

Exactly what is meant be \capture" varies. The most intuitive de�nition is presented in the

de�nition of an executable slice. Other de�nitions are examined later in this section.

3

n statement

1 c = 0

2 while (TRUE)

3 c = 1

4 endwhile

5 c = 2

n statement

5 c = 2

Figure 2: \Sliceable" Divergent Program and the convergent Slice taken with respect to <5; c>

De�nition 4 Executable Program Slice. For statement s and variable v, the slice S of

program P with respect to the slicing criterion < s; v > is any executable program with the

following properties:

1. S can be obtained by deleting zero or more statements from P .

2. If P halts on input I, then the value of v at statement n each time n is executed in P is

the same in P and S. If P fails to terminate normally1 n may execute more times in S

that in P , but P and S compute the same values each time n is executed by P .

Note that every program has itself as a slice on any criteria.

Example. The program of Figure 2 never executes Statement 5, while the slice on <5; c>

includes only Statement 5, which is executed once.

2.1 Slicing Control Flow Graphs

This section describes computing a slice as the solution to a data-
ow problem using a control-

ow graph as an intermediate representation. It considers a progression of harder slicing prob-

lems beginning with slicing straight-line programs, then considering structured control
ow,

unstructured control
ow, data structures, and �nally, procedures.

Computing a slice from a control-
ow graph is a two step process: �rst requisite data
ow

information is computed and then this information is used to extract the slice. The data-

ow information is the set of relevant variables at each node n. For the slice with respect to

<s; v>, the relevant set for each node contains the variables whose values (transitively) a�ect

the computation of v at s. The second step identi�es the statements of the slice. These include

all nodes (statements) n that assign to a variable relevant at n and the slice taken with respect

to any predicate node that directly controls n's execution.

1A program fails to terminate normally if it diverges or terminates abnormally, for example, with a division

by zero error.

4

n statement refs(n) defs(n) relevant(n)

1 b = 1 b

2 c = 2 c b

3 d = 3 d b; c

4 a = d d a b; c

5 d = b+ d b; d d b; c

6 b = b+ 1 b b b; c

7 a = b+ c b; c a b; c

8 print a a a

Figure 3: Relevant Sets for <8; a>.

2.1.1 Slicing Flow Graphs of Straight Line Programs

Straight-line code contains only assignment statements executed one after the other. For such

code the additional slices with respect to predicate nodes are not required. We begin by assuming

that expression evaluation does not alter the values of its operands. Relevant sets for the slice

taken with respect to <n; v> are computed as follows [64]:

1. Initialize all relevant sets to the empty set.

2. Insert v into relevant(n).

3. For m, n's immediate predecessor, assign relevant(m) the value

(relevant(n) �DEF (m)) [(REF (m) if relevant(n) \DEF (m) 6= ;)

4. Working backwards, repeat Step (3) form's immediate predecessors until ninitial is reached.

Example. Figure 3 shows the relevant sets for a slice taken with respect to <8; a>. The

relevant sets are computed from Line 8 to Line 1. For example, relevant(7) = (relevant(8) �

DEF (7)) [(REF (7) if relevant(8) \DEF (7) 6= ;) = (fag � fag)[(fb; cg if fag \ fag 6= ;) =

fb; cg, and relevant(2) = (fb; cg � fcg) [(; if fb; cg \ fcg 6= ;) = fbg. If we were interested

in some variable other than a, the computation of the relevant sets would be di�erent; thus,

di�erent relevant sets must be computed for di�erent slices.

The relevant sets may be viewed as a
ow of sets of variables; the slice is the set of statements

that disturb this
ow. If no relevant variables are def ined at a statement, then the relevant

set
ows through unperturbed. On the other hand, if a relevant variable is def ined then the

statement is added to the slice. In Figure 3, for example, the slice with respect to < 8; a >

includes Lines 7, 6, 2 and 1 (Line 6 changes the b that is in the relevant set). Note that, in

practice, the relevant sets and the statements in the slice are computed in a single pass.

5

n statement refs(n) defs(n) control(n)

1 b = 1 b

2 c = 2 c

3 d = 3 d

4 a = d d a

5 if (a) then a

6 d = b+ d b; d d 5

7 c = b+ d b; d c 5

8 else 5

9 b = b+ 1 b b 8

10 d = b+ 1 b d 8

11 endif

12 a = b+ c b; c a

13 print a a

Figure 4: Control sets.

2.1.2 Slicing Structured Programs

In straight-line programs each statement has a single unique predecessor. In the presence of

structured control
ow, a statement may have multiple control predecessors. The above algo-

rithm requires three modi�cations to handle this: �rst the inclusion of control sets, second a

rule for combining relevant sets at control join points, and �nally, iteration of the relevant set

computation.

The control set control(n) associates with node (statement) n, the set of predicate statements

that directly control n's execution [64]. The use of a set here facilitates the transition to

unstructured control-
ow in Section 2.1.3. For a structured program, control(n) contains a

single entry, the loop or conditional statement that controls the execution of n, or is empty,

when n is a \top-level" statement. For example, in Figure 4 control(6) includes Statement 5,

the if (a) then; the control sets for Statement 9 includes the Statement 8, the else, whose

control set also includes Statement 5. Whenever a statement is added to the slice, the members

of its control set, k, are added to the slice along with statements in the slice taken with respect

to <k;REF (k)>.

At join points (where two nodes have the same predecessor), the relevant set is the union

of the relevant sets of the two nodes. For example, in Figure 5, relevant(5) is the union of

relevant(6) and relevant(9). This assumes the expression in the conditional at the join point

has no side e�ects. If it does then after the union, Step (3) of the relevant set computation must

be performed to update the set to account for the side-e�ects of the expression.

Example. Figure 5 shows the data necessary to calculate the slice with respect to <13; a>

of the program shown in Figure 4. The slice is normally computed in conjunction with the

6

n refs(n) refs(n) control(n) relevant(n)

1 b a

2 c a; b

3 d a; b

4 d a a; b

5 a b; c; d

6 b; d d 5 b; d

7 b; d c 5 b; c

8 5 c; d

9 b b 8 c; d

10 b d 8 c; d

11 b; c

12 b; c a b; c

13 a a

Figure 5: Relevant Sets on a at 13

n statement

0 while (a)

1 xn = xn�1

2 xn�1 = xn�2

: : :

n x2 = x1
n + 1 endwhile

Figure 6: A while statement that needs n passesto compute a slice when x1 is in the criteria.

relevant sets: Working backwards from Line 13, since DEF (12)
T
Relevant(13) 6= ;, Line 12 is

included in the slice and its relevant set is assigned fb, cg. No change occurs at Line 11. Line 10

is included in the slice because DEF (10)
T
Relevant(11) 6= ;; relevant(10) is assigned fc, dg.

Next, Lines 5 and 8 are included in the slice because control(10) includes 8 and control(8)

includes Line 5. Along with these lines, the lines in the slices with respect to <8; REF (8)> =

<8; ;> and <5; REF (5)> = <5; a> are also included. These add to the slice Lines 4 and 3.

Finally, Line 6 completes the slice.

The third change is required to handle loops. The absence of loops allows a slice to be

computed in a single pass over the control-
ow graph; the presence of loops requires iterating

over parts of the graph. In particular, iteration over each loop until the relevant sets and slice

stabilize. Hausler [39] has shown that the maximum number of iterations is the same as the

number of assignment statements in the loop. Figure 6 shows how the upper bound is reached.

7

2.1.3 Slicing Un-Structured Programs

The addition of goto statements, and its restricted forms such as return, exit, break, and continue

complicate the construction of the control sets. One solution is to restructure the program as

goto-less [60] and then slice. The drawback to this method is that the structured version may

be signi�cantly textually dissimilar from the original.

Lyle [64] proposed a simple and conservative solution to slicing over unstructured control

ows: if a goto statement has a non-empty relevant set, include it the slice. The targets of the

goto are included, and so on until the slice stabilizes.

An alternative approach [29] is to note that goto statements are associated with labels. Rather

than look for goto statements to include in the slice, look for labeled statements that are included

in the slice. Then include only the goto statements that branch to these labels. This algorithm

was devised for a language in which the only labels are targets of goto's, a labeled statement

does no computation, and does not have explicit compound statements. That is, statements of

the form

if (b) then {

/* compute X */

} else {

/* compute Y */

}

are replaced by the semantically equivalent:

8

if (b) goto L1

/* compute Y */

goto L2

L1:

/* compute X */

L2:

Each statement of the form

label : statement ;

is transformed to the semantically equivalent

label : null ;

statement ;

De�nition 5 Labeled block. A labeled block is a basic block 2 that begins with a labeled

statement and ends when one of the following occurs.

1. The basic block ends.

2. Another labeled block begins; i.e., another labeled statement occurs.

De�nition 6 Pseudo-label. Let L be the label of the statement that begins a labeled block B.

The remaining statements in B are said to have pseudo-label L.

On the pass after a pseudo-labeled statement is added to the slice, as each goto statement

is examined it is placed in the slice according to whether or not its target (pseudo-)label has

already been added to the slice. The non-computing labeled statements are added if the actual

label matches a pseudo-label in the slice.

2.1.4 Arrays, Records, and Pointers

To handle composite structures and pointers requires a change to the DEF (n) and REF (n)

sets. A simple approach for arrays is to treat each array assignment as both an assignment and

a use of the array. For

n: a[i] := x;

2A basic block[52] is sequence of consecutive instructions that are always executed from start to �nish.

9

one may naively assume that DEF (n) = fag and REF (n) = fi; xg. But the new value of a

also depends and the old value of a, so a must also be included. The correct value for REF (n)

is fa; i; xg. However, this approach leads to correct, but unnecessary large slices.

To more precisely determine if there is a dependence between a statement that contains

an assignment to a[f(i)] and a statement that contains a use of a[g(j)] requires answering the

question \Can f(i) = g(j)?" In general this question is unanswerable, although it can be solved

for some common index expression types. These solutions are often one sided: algorithms exist

to determine if the answer to the question is \no." Otherwise, no information is obtained. To

illustrate this, consider the Greatest Common Divisor (GCD) Test applied to the following loop

i = 0

while (i < N)

f

X[a1 * i + a0] = : : :

: : : = X[b1 * i + b0]

i = i + 1

g

If gcd(a1; b1) does not divide (b0 � a0) then the GCD test demonstrates the absence of a

dependence between s1 and s2, but if gcd(a1; b1) divides (b0 � a0), the solution may lay outside

the range 0:::N . Other tests [68, 76] are similarly one sided. If none of these tests can prove

the absence of a
ow dependence then one is assumed to exist. This provides a more precise,

yet safe, approximation to the correct data relationships. Once this has been done, the slicing

algorithm proceeds as in the absence of arrays.

Records are simple, if not tedious, to treat in a slicing algorithm. Unlike arrays, each �eld of

a record is identi�ed by a constant (the �eld's name). This allows occurrences of record:field

to be treated as occurrences of the simple variable record field. The assignment of one record

to another is modeled as a sequence of �eld assignment.

The multiple levels of indirection for both assignment and reference of pointers create di�cult

problems. One must obtain every possible location to which a pointer could point. If a variable

is defined or referenced through a chain of pointers (e.g., *****a), then all intermediate locations

in the accessing of the variable must be considered as refed locations.

Lyle, et al. [67] construct, then prune a pointer state graph (PSS) for expression �ka. The

PSSk(a) is a directed graph with single source a and de�ned recursively as

PSSk(a) =

8><
>:

a; if k = 0

fv j � a = vg; ifk = 1 & edge(a; v) 2 PSSk(a)

fv j v 2 PSS1(u) ^ u 2 PSSi�1(a)g; otherwise & edge(u; v) 2 PSSk(a)

PSSk(a) gives the possible references of �
ka. It is then pruned: RPSSk(a)(w) = fv 2 PSSk(a) ^

dist(v; w) � kg, where dist(w; v) is the distance, measured in edges, between v and w. RPSSk(a)(w)

10

is used to compute DEF (n) by eliminating the indirect de�nitions of w that cannot reached via

k levels of indirection from a. See [67] for a detailed discussion.

2.1.5 Interprocedural Slicing

Slicing across procedures3 complicates the situation due to the necessity of translating and

passing the criteria into and out of calling and called procedures. When procedure P calls

procedure Q at statement i, the active criteria must �rst be translated into the context of Q

and then recovered once Q has been sliced.

To translate a set of criteria, C, into a called procedure, for each v 2 relevant(succ(Q)) \

actual parameter(Q) map v ! !, the corresponding formal parameter of Q. Then generate new

criteria <n
Q
final; ! >. If v 2 relevant(succ(Q)) \ local definition(Q), i.e., a local rede�nition

of v occurs, change the line number of criteria involving v to i, the call-site of Q. When n
Q
initial

is reached, unmap ! ! v, and replace n
Q
initial with i. Weiser called this new set of criteria

DOWN0(C).

This is essentially an in-line replacement of each procedure occurrence, with appropriate

substitutions. Globals pass into the called procedure undisturbed if their visibility is not blocked

by a variable in Q; thus references to them inside the procedures are captured correctly. This

method was introduced early in the development of the idea of slicing and does not address hard

questions about pointers, aliasing, function parameters, etc.

When P is called from statement j of Q, criteria must be generated to slice up into Q.

The new criteria are generated in similar fashion to the calling context. Criteria involving local

variables are discarded, so that no unde�ned references are passed out. Criteria involving formal

parameters are mapped into the corresponding actual ofQ with new line number j. Weiser called

this set UP0(C).

The sets DOWN0(C) and UP0(C) are then mapped to functions from criteria to criteria:

DOWN(CC) = [C2CCDOWN0(C) and UP (CC) = [C2CCUP0(C). Union and transitive closure

are de�ned in the usual way for these relations. Thus (DOWN[UP)�(C) will give a complete

set of criteria to obtain the interprocedural slice for any criteria. This conservative, but correct,

approximation was improved by [48].

2.2 Slicing as a Graph-Reachability Problem

Ottenstein and Ottenstein [73] observed that the program dependence graph (PDG), used in

vectorizing and parallelizing compilers and program development environments, would be an

ideal representation for constructing program slices: \Explicit data and control dependence

make the PDG ideal for constructing program slices" [73].

3This section follows closely that of Weiser [97].

11

This section �rst discusses a variation of the PDG used to compute intraprocedural slices

of structured programs and the extensions necessary to slice programs that contain procedures

and procedure calls[43]. Both of these algorithm have three steps:

1. Construct a dependence graph from the program.
2. Slice the dependence graph.
3. Obtain a sliced program from the sliced graph.

The advantage of the dependence graph approach is that steps 2 and 3 are e�cient. For

example, Step 2 is linear in the size of the graph. However, step 1, the construction of the pdg is,

O(n2) in the number of statements in the program. In order to focus on the slicing algorithms,

this section does not discuss how Step 1, dependence graph construction, is accomplished (see[26,

38, 43, 48, 61, 73] for details).

2.2.1 Intraprocedure Slicing

The PDG used for intraprocedural slicing by Horwitz, et al. [43] is a modi�ed version of the

dependence graph considered by Ottenstein and Ottenstein [73]. The PDG for program P ,

denoted by GP , is a directed graph whose vertices are connected by several kinds of edges. The

vertices of GP represent the assignment statements and control predicates that occur in program

P . In addition, GP includes a distinquished vertex called the entry vertex.

GP is a multi-graph. Not only can it have more than one edge between two vertices, it

may have more than one edge of a given kind between two vertices. Edges in GP represent

dependences among program components. An edge represents either a control dependence or

a
ow dependence. Control dependence edges are labeled true or false, and the source of a

control dependence edge is always the entry vertex or a predicate vertex. A control dependence

edge from vertex u to vertex v, denoted by u!c v, means that during execution, whenever the

predicate represented by u is evaluated and its value matches the label on the edge to v, then the

program component represented by v will eventually be executed if the program terminates. For

structured languages control dependences re
ect the program's nesting structure. Consequently,

PDG GP contains a control dependence edge from vertex u to vertex v of GP i� one of the

following holds:

1. u is the entry vertex, and v represents a component of P that is not nested within any

loop or conditional; these edges are labeled true.

2. u represents a control predicate, and v represents a component of P immediately nested

within the loop or conditional whose predicate is represented by u.

If u is the predicate of a while-loop, the edge u!c v is labeled true; if u is the predicate of

a conditional statement, the edge u!c v is labeled true or false according to whether v occurs

in the then branch or the else branch, respectively.

12

A
ow dependence edge from vertex u to vertex v means that the program's computation

might be changed if the relative order of the components represented by u and v were reversed.

The
ow-dependence edges of a PDG are computed using data-
ow analysis. A PDG contains

a
ow dependence edge from vertex u to vertex v, denoted by u !f v, i� all of the following

hold:

1. u is a vertex that de�nes variable x.

2. v is a vertex that uses x.

3. Control can reach v after u via an execution path along which there is no intervening

de�nition of x.

Flow dependences can be further classi�ed as loop carried or loop independent. A
ow

dependence u !f v is carried by loop L, denoted by u!lc(L)v, if in addition to 1, 2, 3 above,

the following also hold:

4. There is an execution path that both satis�es the conditions of (3) above and includes a

backedge to the predicate of loop L.

5. Both u and v are enclosed in loop L.

A
ow dependence u !f v is loop independent, denoted by u!liv, if in addition to 1, 2, 3

above, there is an execution path that satis�es 3 above and includes no backedge to the predicate

of a loop that encloses both u and v. It is possible to have both u!lc(L) v and u!liv.

When there is more than one loop-carried
ow dependence edge between two vertices, each

is labeled by a di�erent loop that carries the dependence. Figure 7 shows an example program

and its PDG.

For vertex s of PDG G, the slice of G with respect to s, denoted by Slice(G; s), is a graph

containing all vertices on which s has a transitive
ow or control dependence (i.e., all vertices

that can reach s via
ow and/or control edges):

V (Slice(G; s)) = fv 2 V (G) j v !�

c;f sg.

The edges of Slice(G; s) are those in the subgraph of G induced by V (Slice(G; s)):

E(Slice(G;S)) = fv !f u 2 E(G) j v; u 2 V (Slice(G;S))g

[fv !c u 2 E(G) j v; u 2 V (Slice(G;S))g

The vertices of the slice of the PDG shown in Figure 7 taken with respect to the output vertex

for i are highlighted in Figure 7.

Slicing programs with composite data structures involves changing the computation of the

ow dependence edge only. Two methods for slicing in the presence of arbitrary control
ow

(programs containing gotos) require modifying the control dependence subgraph of the PDG,

but not the slicing algorithm. Choi and Ferrante [22] augment the the control
ow graph that

13

hhh
program Main

SUM := 0
i := 1
while i < 11 do

SUM := SUM+i
i := i +1

od
print (SUM)
print (i)

end

Edge Key
control dependence
loop-independent flow dependence

| loop-carried flow dependence

ENTRY

SUM := 0 i := 1 while i < 11

SUM := SUM + i i := i + 1

Output(i) Output(SUM)

T T T T T

T T

hh

Figure 7: An example program, which sums the integers from 1 to 10 and leaves the result in

the variable sum, and its program dependence graph. The vertices of the slice of this PDG

taken with respect to the �nal use of i is shown in bold.

14

is used in the construction of the PDG with a set of fall-through edges, i.e., the lexcial successor

of the goto in the source text. The fall-through edges captures the requisite control
ow when

a goto statement is deleted from the slice.

Ball and Horwitz [7] describe a similar technique in which jump statements are represented

by pseudo-predicate vertices, which always evaluate to true. The outgoing control edge labeled

true is connected to the target of the jump, while a false successor is connected to the jump

statement's continuation: i.e, the statement that would be executed if the jump were a nop.

Harrold, Malloy and Rothermel[38] describe an e�cient construction of PDG's that captures

exact control dependence (i.e., gotos) but uses neither a control
ow graph or a post dominator

tree as an auxiliary structure. This construction technique improves the methods of [7, 22]

for construction of the PDG. During the parse, a partial control dependence subgraph, which

incorporates exact control is constructed. The partial control dependence subgraph manages

control
ow by ordering the nodes implicitly during construction or explicitly by the creation

of control edges. The presence of gotos does require a minor change to Step 3 of the slicing

algorithm (the projection of a program from the sliced PDG). This change ensures that labels

of statements not in the slice are include in resulting program if a goto to that label is in the

slice.

Another method for computing slices in the presence of arbitrary control
ow avoids changing

the PDG at the expense of modifying the slicing algorithm use in step (2) [2]. This method

maintains two relations: postdominator and lexical-successor. The algorithm computes a slice

from the graph use by the HPR algorithm using step (2) and then looks for jump statement not

in the slice whose nearest postdominator in the slice is di�erent from the nearest lexical success

in the slice. Such statement are then added to the slice. As with the algorithms in [7, 22, 38]

and step (3) must be modi�ed to include any necessary labels.

2.2.2 Interprocedural Slicing of Dependence Graphs

Interprocedural slicing as a graph reachability problem requires extending of the PDG and, unlike

the addition of data types or unstructured control
ow, it also requires modifying the slicing

algorithm. The PDG modi�cations represent call statements, procedure entry, parameters, and

parameter passing. The algorithm change is necessary to correctly account for procedure calling

context. This section describes the interprocedural slicing algorithm presented in [48], which

is based on an extension of the PDG called the system dependence graph (SDG).4 Horwitz

et al. [48] introduced the term \system dependence graph" for the dependence graphs that

represents multi-procedure programs. The term \system" will be used to emphasize a program

with multiple procedures.

The SDG models a language with the following properties:

4The term \SDG" is used because the term \PDG"is associated with graphs that represent single procedure
programs

15

1. A complete system consists of a single main procedure and a collection of auxiliary proce-

dures.

2. Parameters are passed by value-result.

Techniques for handling parameters passed by reference and for dealing with aliasing as

discussed at the end of this section.

Horwitz, et al. [48] make the further assumption that there are no call sites of the form

P (x; x) or P (g), where g is a global variable. The former restriction sidesteps potential copy-back

con
icts. The latter restriction permits global variables to be treated as additional parameters

to each procedure; thus, they are not discussed explicitly.

An SDG is made up of a collection of procedure dependence graphs connected by interproce-

dural control- and
ow-dependence edges. Procedure dependence graphs are similar to program

dependence graphs except that they include vertices and edges representing call statements, pa-

rameter passing, and transitive
ow dependences due to calls (we will abbreviate both procedure

dependence graph and program dependence graph by \PDG"). A call statement is represented

using a call vertex; parameter passing is represented using four kinds of parameter vertices: on

the calling side, parameter passing is represented by actual-in and actual-out vertices, which are

control dependent on the call vertex; in the called procedure, parameter passing is represented

by formal-in and formal-out vertices, which are control dependent on the procedure's entry ver-

tex. Actual-in and formal-in vertices are included for every global variable that may be used or

modi�ed as a result of the call and for every parameter; formal-out and actual-out vertices are

included only for global variables and parameters that may be modi�ed as a result of the call.

Interprocedural data-
ow analysis is used to determine the parameter vertices included for each

procedure [8, 10].

Transitive dependence edges, called summary edges, are added from actual-in vertices to

actual-out vertices to represent transitive
ow dependences due to called procedures. These

edges were originally computed using a variation on the technique used to compute the subor-

dinate characteristic graphs of an attribute grammar's nonterminals [48]. Recently, Reps et. al.

described a faster algorithm for computing summary edges [84]. A summary edge is added if a

path of control,
ow and summary edges exists in the called procedure from the corresponding

formal-in vertex to the corresponding formal-out vertex. Note that the addition of a summary

edge in procedure Q may complete a path from a formal-in vertex to a formal-out vertex in Q's

PDG, which in turn may enable the addition of further summary edges in procedures that call

Q.

Procedure dependence graphs are connected to form an SDG using three new kinds of edges:

1. a call edge is added from each call-site vertex to the corresponding procedure-entry vertex;

2. a parameter-in edge is added from each actual-in vertex at a call site to the corresponding

formal-in vertex in the called procedure; and

16

3. a parameter-out edge is added from each formal-out vertex in the called procedure to the

corresponding actual-out vertex at the call site.

Figure 8 shows an example system and the corresponding SDG. (In Figure 8, as well as in the

remaining �gures of the paper, the edges representing control dependences are shown unlabeled;

all such edges would be labeled true.)

Interprocedural slicing can be de�ned as a reachability problem using the SDG, just as intra-

procedural slicing is de�ned as a reachability problem using the PDG. The slices obtained using

this approach are the same as those obtained using Weiser's interprocedural-slicing method [97].

However, his approach does not produce slices that are as precise as possible, because it considers

paths in the graph that are not possible execution paths. For example, there is a path in the

graph shown in Figure 8 from the vertex of procedure Main labeled \xin := sum" to the vertex

of Main labeled \i := yout." However, this path corresponds to procedure Add being called by

procedure A, but returning to procedure Increment, which is not possible. The value of i after

the call to procedure A is independent of the value of sum before the call, and so the vertex

labeled \xin := sum" should not be included in the slice with respect to the vertex labeled

\i := yout" Figure 9 shows this slice).

To achieve more precise interprocedural slices, an interprocedural slice with respect to vertex

s is computed using two passes over the graph. Summary edges permit moving across a call

site without having to descend into the called procedure; thus, there is no need to keep track of

calling context explicitly to ensure that only legal execution paths are traversed. Both passes

operate on the SDG, traversing edges to �nd the set of vertices that can reach a given set of

vertices along certain kinds of edges. Informally, if s is in procedure P then pass 1 identi�es

vertices that reach s and are either in P itself or procedures that (transitively) call P . The

traversal in pass 1 does not descend into procedures called by P or its callers. Pass 2 identi�es

vertices in called procedures that induce the summary edges used to move across call sites in

pass 1.

The traversal in pass 1 starts from s and goes backwards (from target to source) along

ow edges, control edges, call edges, summary edges, and parameter-in edges, but not along

parameter-out edges. The traversal in pass 2 starts from all vertices reached in pass 1 and goes

backwards along
ow edges, control edges, summary edges, and parameter-out edges, but not

along call, or parameter-in edges. The result of an interprocedural slice consists of the sets of

vertices encountered during by pass 1 and pass 2, and the set of edges induced by this vertex

set. A worklist algorithm for �nding the vertices of an interprocedural slice is stated in [48].

The (full backward) interprocedural slice of graph G with respect to vertex set S, denoted by

Slice(G;S), consists of the sets of vertices identi�ed by pass 1 and pass 2, and the set of edges

induced by this vertex set.

Slice(G;S) is a subgraph of G. However, unlike intraprocedural slicing, it may be infeasible

(i.e., it may not be the SDG of any system). The problem arises when Slice(G;S) includes

mismatched parameters: di�erent call-sites on a procedure include di�erence parameters. There

17

hhh
procedure Main

sum := 0
i := 1
while i < 11 do

call A (sum, i)
od
print(sum)

end

procedure A (x, y)
call Add (x, y)
call Increment (y)

return

procedure Add (a, b)
a := a + b

return

procedure Increment (z)
call Add (z, 1)

return

ENTER Main

sum := 0 i := 1 while i < 11

call A

Output (sum)

xin := sum yin := i sum := xout i := yout

ENTER A

call Addx := xin y := yin call Inc xout := x yout := y

ain := x bin := y x := aout zin := y y := zout

ENTER Inc

z := zin call Add zout := z

ain := z bin := 1 z := aout

ENTER Add

a := ain b := bin a := a + b aout := a

Edge Key
control

intraprocedural flow
(loop-independent)

| intraprocedural flow
(loop-carried)

summary

call,
parameter-in,
parameter-out

hh

Figure 8: Example system and its SDG.

18

hhh
procedure Main

i := 1
while i < 11 do

call A (i)
od

end()

procedure A (y)
call Increment (y)

return

procedure Add (a, b)
a := a + b

return

procedure Increment (z)
call Add (z, 1)

return

ENTER Main

i := 1 while i < 11

call A

yin := i i := yout

ENTER A

y := yin call Inc yout := y

zin := y y := zout

ENTER Inc

z := zin call Add zout := z

ain := z bin := 1 z := aout

ENTER Add

a := ain b := bin a := a + b aout := a

Edge Key
control

intraprocedural flow
(loop-independent)

| intraprocedural flow
(loop-carried)

summary

call,
parameter-in,
parameter-out

hh

Figure 9: The SDG from �gure 8 sliced with respect to the formal-out vertex for parameter z

in procedure Increment, together with the system to which it corresponds. Note that this slice

correctly excludes the vertex labeled xin := sum in �gure 819

are two causes of mismatches: missing actual-in vertices and missing actual-out vertices. Mak-

ing such systems syntactically legal by simply adding missing parameters leaves semantically

unsatisfactory systems [19]. In order to include the program components necessary to compute

a safe value for the parameter represented at missing actual-in vertex v, the vertices in the Pass

2 slice of G taken with respect to v must be added to the original slice. A Pass 2 slice includes

the minimal number of components necessary to produce a semantically correct system. The

addition of Pass 2 slices is repeated until no further actual-in vertex mismatches exist.

The second cause of parameter mismatches is missing actual-out vertices. Because missing

actual-out vertices represent dead-code no additional slicing is necessary. Actual-out mismatches

are removed by simply adding missing actual-out vertices to the slice.

A system can now be obtained by projecting the statements of the original system that are

in the original slice or added by the above two steps. These statements appear in the same order

and at the same nesting level as in the original system. The details of this algorithm are given

in [19].

2.2.3 Interprocedural Slicing in the Presence of Call-By-Reference Parameter Pass-

ing and Aliasing

The de�nitions of the system dependence graph and interprocedural slicing assume that param-

eters are passed by using value-result parameter passing. The same de�nitions hold for call-by-

reference parameter passing in the absence of aliasing; however, in the presence of aliasing, some

modi�cations are required. Two extreme methods for handling aliasing include transforming the

system into an aliasing-free system and generalizing the de�nition of
ow dependence. Trans-

lation is done by creating a copy of a procedure for each possible aliasing con�guration that it

may be called under. Because the number of aliasing con�gurations is potentially exponential,

the cost of this transformation may, in the worst case, be exponential in the maximum number

of formal parameters associated with any one procedure.

Generalizing the de�nition of
ow dependence makes the pessimistic assumption that any

aliases that exist during a particular call to a procedure may exist during all calls to the proce-

dure. Such aliases are referred to as may aliases. This requires the use of generalized de�nitions

for
ow dependence. For example, a
ow dependence edge connects vertex v to vertex u i� all

of the following hold:

1. v is a vertex that de�nes variable x.

2. u is a vertex that uses variable y.

3. x and y are potential aliases.

4. Control can reach u after v via a path in the control-
ow graph along which there is no

intervening de�nition of x or y.

20

Note that clause (4) does not exclude there being de�nitions of other variables that are

potential aliases of x or y along the path from v to u. An assignment to a variable z along

the path from v to u only over-writes the contents of the memory location written by v if x

and z refer to the same memory location. If z is a potential alias of x, then there is only a

possibility that x and z refer to the same memory location; thus, an assignment to z does not

necessarily over-write the memory location written by v, and it may be possible for u to read a

value written by v.

The �rst solution produces more precise (smaller) slices than the second at the expense of

transforming the system. It is possible to consider intermediate solutions to the problem of

slicing in the presence of aliasing. Binkley [18] presents an algorithm that is parameterized by a

set of aliasing information. The more precise this information, the more precise the slice. In the

case of exact information, the same slice is produce as by the transformation approach without

replicating procedures. In the case of a maximal approximation (imprecise information), the

same slice if obtained as by the generalized dependence approach. In between is a range of

possible slices di�ering only in their precision.

2.3 Dynamic Slicing as a Data-Flow Problem

Korel and Laski[53] introduced the idea of dynamic slicing. Their solution, pattered after

Weiser's static slicing algorithm, solves the problem using data-
ow equations. A dynamic

slice di�ers from a static slice in that is makes use of information about a particular execution

of a program. Thus, a dynamic slice contains \all statements that actually a�ect the value of a

variable at a program point for a particular execution of the program" rather than \all statements

that may a�ected the value of a variable at a program point for any arbitrary execution of the

program" [53].

Most dynamic slices are computed with respect to an execution history (called a trajectory

in [53]). This history records the execution of statements as the program executes. The execution

of a statement produces an occurrence of the statement in the execution history. Thus, the

execution history is a list of statement occurrences.

Example. Two example execution histories are shown in Figure 10. Superscripts are

used to di�erentiate between the occurrences of a statement. For example, statement 2 executes

twice for the second execution producing occurrences 21 and 22.

Korel and Laski de�ne a dynamic slice, taken with respect to a set of variables V , An Input

I, and a point P in the execution history (obtained by running the program on I), as a reduced

executable program. The execution history for the execution of this program on input I must

satisfy the slice sub-list property. Intuitively this property is satis�es if the execution history of

the slice is equivalent to the execution history of the original program after removing occurrences

of statement not in the slice.

Figure 11 shows the Korel and Laski slice of the program shown in Figure 10 taken with

respect to (fag, 2, 32). Notice that this slice impreciseley includes 31 which does not a�ect the

21

hhh

Statement
Number Programiiiiiiiiiiiiiiiiiiiiiiiii

1 read(N)
2 for i = 1 to N do
3 a = 2
4 if c1 then
5 if c2 then
6 a = 4

else
7 a = 6

fi
fi

8 z = a
od

9 print(z)

Execution History 1
Input N =1, c1 and c2 both true. <11, 21, 31, 41, 51, 61, 81, 22, 91>

Execution History 2
Input N =2, c1 and c2 false on the first iteration and true on the second.
<11, 21, 31, 41, 81, 22, 32, 42, 51, 61, 82, 23, 91>

hh

Figure 10: Two execution histories.

22

hhh

read(N)
for i = 1 to N do

a = 2
od

Execution history of slice

<11, 21, 31, 22, 32>

hh

Figure 11: A dynamic slice of the program shown in Figure 10 and its execution history.

23

computation at 32. Why this occurrence is needed in the Korel and Laski framework and how

Agrawal and Horgan remove it is discussed at the end of this section.

Two formalize the notion of a dynamic slice, we consider the relationship between the execu-

tion histories of the program and its slice (on the same input). The execution history of the slice

should be obtained by removing occurrences from execution history of the original program. To

do this we must remove occurrences of statement not in the slice and remove all occurrences

after the occurrence with respect to which the slice was taken.

Formally, we make use of three the operators:

1. collect(list; predicate) = [l 2 list j predicate(l) = true]

2. front(list; li) = [lj 2 list j j <= i]

3. occurrence of(li; P) = true i� li is an occurrence of a statement of P .

De�nition 7 Dynamic Slice. Program P 0 is the slice of program P taken with respect to (V , I,

p) if L and L0 are the execution histories for P and P 0, respectively, p0 is the occurrence of p in

L0, and the following property is satis�ed.

front(L0; p0) = collect(front(L; p); �l:occurrence of(l; P 0))

Example. For the slice taken with respect to (fag, 2, 31) of the program shown in

Figure 10 we have (< 11; 21; 31; 22; 32 >; 31) = < 11; 21; 31 >

and

collect (front (< 11; 21; 31; 41; 81; 22; 32; 42; 51; 61; 82; 23; 91 >; 31); �l:occurrence of(l; P 0)) =

collect(< 11; 21; 31 >; �l:occurrence of(l; P 0)) =< 11; 21; 31 >

While for the slice with respect to (fag, 2, 32)

front (< 11; 21; 31; 22; 32 >; 32) =< 11; 21; 31; 22; 32 >.

and

collect(front(< 11; 21; 31; 41; 81; 22; 32; 42; 51; 61; 82; 23; 91 >; 32); �l:occurrence of(l; P 0)) =

collect(< 11; 21; 31; 41; 81; 22; 32 >; �l:occurrence of(l; P 0)) =< 11; 21; 31; 22; 32 >.

Dynamic slices are computed from three data
ow relations computed from the program.

The �rst two capture the
ow and control dependences. Unlike static slicing, these de�nitions

refer to the execution history; thus, they capture dependences that actually happened in the

particular execution of the program rather than dependences that may occur in some execution

of the program as is the case with static slicing. The �nal relation is explained below.

The �rst de�nition captures
ow dependences that arise when one occurrence represent the

assignment of a variable and another a use of that variable. For example, in Figure 10 when c1

and c2 are both false, there is a
ow dependence from s3 to s8.

De�nition 8 De�nition-Use (DU). viDU uj , vi appears before uj in the execution history

and there is a variable x de�ned at vi, used at uj, but not de�ned by any occurrence between vi

and uj.

24

The second de�nition captures control dependence. The only di�erence between this de�ni-

tion and the static control dependence de�nition is that multiple occurrence of predicates exist.

Consequently, care must be taken to avoid a statement earing dependent on a predicate from

an earlier iteration of a loop.

De�nition 9 Test Control (TC). vi TC uj , u is control dependent on v (in the static sense)

and for all occurrences wk between vi and uj, w is control dependent on v.

The de�nition of a dynamic slice requires the use of

front(L0; p0) = collect(front(L; p); �l:occurrence of(l; P 0)). The above two relations are in-

su�cient to ensure this. For example, the slice obtained from the program in Figure 10 taken

with respect to (fag, 2, 32) using only the above two relations is < 11; 21; 22; 32 >, which omits

31. In this example the omission would be benign, but in other examples the slice would not

have the correct execution history. Korel and Laski solve this problem by including the following

relation. Note that this produces a conservative solution to the problem. That is, some dynamic

slices are bigger than they need to be.

De�nition 10 Identity Relation (IR). vi IRuj , v = u.

The relationsDU , TC, And IR are used to formulate the algorithm for a dynamic slicing by

computing an ever growing approximation to occurrences in the slice. Let E be the execution

history produces for program P when run on input I. In the following two equations only the

front of E is of interest to the dynamic slice, since only these occurrences may a�ect the point

where the slice originates.

The �rst approximation to the slice taken with respect to (V , I, li) contains the direct control

and data in
uences:

S0 = fvj 2 front(E; li) j vj TC lig [fvj 2 front(E; li) j x 2 V ^ x is de�ned at vj but not

de�ned by any occurrence between vj and li.

The slice is found by iterating the following until a �xed point is reached. Si+1 = Si [fvj 2

front(E; li) j 9uk 2 Si s.t. vj (DU [TC [IR)ukg. The above iteration must terminate since E

is �nite and bounds each Si. To complete the slice it is necessary to include the occurrence with

respect to which the slice was taken. Finally, the sliced program P 0 is obtained by projecting

out of P those statement that have occurrences the �xed point solution.

Example. The dynamic slice of Execution History 2 from Figure 10 taken with respect

to (fag, 2, 31) is computed as follows

DU = f(11; 21)(31; 81)(61; 82)(82; 91)g

TC = f(21; 31)(21; 41)(21; 81)(21; 32)(21; 42)(21; 82)(22; 32)(22; 42)(22; 82)(42; 51)(51; 61)g

IR = f(21; 22)(21; 23)(22; 23)(31; 32)(41; 42)(81; 82)g

S0 = f21g

S1 = f11; 21g

S2 = f11; 21g = S1; thus the iteration ends.

25

S = f31g [f11; 21g = f11; 21; 31g.

Similar to static slicing, handling unstructured control
ow requires modifying the de�nition

of control dependent on used in the de�nition of TC. Unlike static slicing, handling di�erent

data types can be done more precisely in a dynamic slice. First consider arrays. Because

the subscript value is known at run time, the ambiguity of array accesses in static slicing is

gone. The only complication this raises is that di�erent occurrences of a statement may assign

di�erent variables (for simplicity, we consider each array element a di�erent variable). Records

are similarly handled by treating each component as a separate variable. Finally, consider

dynamically allocated memory. This can also be handled by giving each newly allocated block

of memory a pseudo name. At the end of the next section we describe how Agrawal and Horgan

replace the notion of (pseudo) variable name to improve dynamic slicing in debugging.

2.4 Dynamic Slicing as a Graph-Reachability Problem

Agrawal and Horgan presented the �rst algorithms for �nding dynamic slices using dependence

graphs [5]. We �rst consider two simple dynamic slicing algorithms that are imprecise. We then

consider two exact algorithms that di�er only in their space complexity. The initial description

of all four algorithms assumes scalar variables. The extensions necessary to handle complex

data structures including, for example, (unconstrained) pointers, arrays, records, and unions

are considered at the end of this section

The �rst two algorithms both mark some portion of a PDG as \executed." The �rst marks

executed vertices and the second marks executed edges. Both algorithms su�er because they

summarize in one place (a vertex or an edge) all the times a statement or dependence edge

between statements was executed. The �rst algorithm initially labels all vertices in the PDG

as \unexecuted." As the program runs, whenever a statement is executed its corresponding

vertex is marked as \executed." After execution the slice is computed by applying the static

slicing algorithm restricted to only marked vertices (and the edges that connect them). Thus,

unexecuted vertices will not be in the dynamic slice.

As illustrated in Figure 12 by Slice 1, this approach produces imprecise slices because it is

possible for a vertex to be marked executed even though it does not actually a�ected a given

computation. For Slice 1, s3 is executed, but the assignment at s6 overwrites the value written

to a. Therefore, s3 need not be in the dynamic slice.

The second algorithm marks \executed edges." This produces more precise answers by

leaving out statements that were executed, but had no in
uence on the variables in the slice

(the corresponding edges were not \executed." It's imprecision comes in loops where di�erent

iterations execute di�erent edges. In Slice 1 shown in Figure 12, marking edges allows the

algorithm to leave out s3, because the
ow dependence edge from s3 to s8 is never executed.

However, for the 2, this edges is executed during the �rst iteration of the loop. Since the second

iteration overwrites the value of a, s3 need not be in the dynamic slice. The problem is that

di�erent iterations require marking di�erent edge occurrences . Summarizing all occurrences on

26

hhh

Slice 1: slice on z at s 9 for the input N =1, where c1 and c2 both true:
static slice contains s 1−s 9

dynamic slice (marking nodes) contains s 1−s 6, s 8, s 9

dynamic slice (marking edges) contains s 1, s 2, s 4−s 6, s 8, s 9

Slice 2: slice on z at s 9, for input N =2, where c1 and c2 false on the first iteration and true on the second:
static slice contains s 1−s 9

dynamic slice (marking nodes) contains s 1−s 6, s 8, s 9

dynamic slice (marking edges) contains s 1−s 6, s 8, s 9

hh

Figure 12: Two dynamic slices of the program shown in Figure 10 that show the limitation of

the �rst two dynamic slicing algorithms.

27

s
1

s
2

s
9

s
3

s
4

s
5

s
6

s
7

T T

T

T F

PDG

s
8

T

Figure 13: The PDG for the program shown in Figure 10

a single edge introduces imprecision.

Example. Figure 12 compares static slicing with these two dynamic slicing algorithms

for two di�erent inputs. (Figure 13 shown the PDG for this program). The static slice taken at

(the vertex representing) statement s9 with respect to z contains the entire program because all

three assignments to a may reach the use at statement s8. The node-marking dynamic slicing

algorithm produces a smaller slice for both inputs because s7 does not execute in either case.

These slices, however, unwantedly include s3 which does execute, but which does not a�ect the

computation of z. The edge-marking algorithm correctly handles this in Slice 1, because the

ow dependence edge from s3 to s8 is not executed. However, the weakness of the edge marking

algorithm is shown by Slice 2: Although the assignment at s2 does no a�ect the output value of

z, this
ow edges is executed by the �rst iteration of the loop. Because it is marked executed,

s2 is included in the slice.

In order to omit statements in loops like s3, it is necessary to have multiple occurrences of

the vertices and edges in the loop. This is captured by the execution history of a program for

a given input. For example, Slice 2 of the program in Figure 12 produces the execution history

< 1, 21, 31, 41, 81, 22, 31, 42, 52, 62, 82, 23, 9 > where the superscripts are used to denote

di�erent executions of the same statement.

A dynamic slice can now be de�ned in terms of a variable, an execution history, and an

28

s
1

s
2

s
9

s
3

s
4

s
5

s
6

s
7

T T

T

T F

DDG

s
8

T

s
2

s
3

s
4

s
5

s
6

s
7

T T

T

T F

s
8

T

T

Figure 14: The DDG for the Slice 2 in the examle shown in Figure 12

occurrence of a statement in the execution history. The slice contains only those statements

whose execution had some e�ect on the value of the variable at the occurrence of the statement

in the execution history. To obtain this slice a Dynamic Dependence graph (DDG) is produced

from the execution history. A dynamic dependence graph has a vertex for each occurrence

of a statement in the execution history and contains only executed edges. Because a DDG

separates the occurrences of the executed vertices and edges, a vertex in a loop to have multiple

occurrences, which can have di�erent incoming dependence edges. This removes the imprecision

in the two simple approaches.

Control dependence edges of the DDG are copies of the control dependence edges from

the static dependence graph. There is a single dynamic
ow dependence for each variable v

referenced at a node n. The source of this edge is computed from the Dynamic Reaching

De�nitions (DRDs), which are in turn computed from the execution history as follows:

DRD(var; empty) = ;.

DRD(var;< previous history j last node >) =

(
flast nodeg if var 2 def(last node)

DRD(var; previoushistory) otherwise

29

Example. Figure 14 shows the DDG for the Slice 2 of the program shown in Figure 12.

This graph contains two occurrences of s8. The �rst has an incoming
ow dependence edge from

s3 while the second has an incoming
ow dependence edge from s6. Since the only occurrence

of s9 has an incoming edges from the second occurrence of s8, s6 and not s3 are included in the

slice.

The disadvantage of this approach is its space requirement. Since a loop may execute an

unbounded number of times, there may be an unbounded number of vertex occurrences. This is

clearly unacceptable and, it turns out, unnecessary. A dynamic slice is a subset of the original

program; consequently, there can be only a �nite number of slices (subsets). The �nal dynamic

slicing algorithm, which computes the same slices as the third algorithm, exploits this fact to

limit the size of the dynamic dependence graph.

The fourth algorithm, considers each new vertex occurrence v as the DDG is built. If a

suitable vertex occurrence u exists in the DDG then v is merged into u. Vertex occurrence u is

suitable if its slice is the same as the slice of the new vertex occurrence. That is the statements

whose occurrences a�ect u are the same as the statements that a�ect v. Note that since the slice

is a projection of the DDG back on to the original program, it is possible to combine vertices

that are not created from the same statement.

The algorithm maintains three sets: DefinitionNodes, which maps a variable's name to the

last vertex occurrence that de�nes it; PredicateNode, which maps a control statement to its

most recent occurrence in the DDG; and ReachingStatements, which, for each node n, contains

all the statements of the original program with an occurrence that reaches n. The slice with

respect to a occurrence of statement s is simply those statements in ReachingStatements(s),

when the occurrence of s is created.

2.4.1 Dynamic Slicing of Programs with Unconstrained Pointers

Agrawal and DeMillo extended the above notion of dynamic slicing to programs that contain

unconstrained (C like) pointers. The technique applies also to arrays, constrained (Pascal like)

pointers, records, and other data structures [4].

What makes unconstrained pointers di�cult is the loss of the 1-1 mapping from variables

assigned and used and from memory locations assigned and used. This is no longer true in

the presence of more complexed data structures. While aggregates such as records can be

handled by treating each �eld as a separate variable, and even array elements can be treated

as separate elements, since dynamic slicing has access to the run-time index value, pointers

presents a particularly di�culty problem. If we ignore \pointer laundering" through variant

records, constrained pointers, such as those found in Pascal, always point to a nameable object

of a particular type. Special names are given to objects allocated from the heap. As with

records and arrays, run-time information allows us to identify the particular object pointed to

by a given pointer. In contract, unconstrained pointers , such as those found in C, may use or

modify arbitrary (unnamed) memory locations.

30

This forces us to generalize �rst the notion of a variable (var in the proceeding de�nition of a

Dynamic Reaching De�nition) to memory cells. Each cell is composed of a starting address and

a length. A
ow dependence exists between a node that modi�es cell1 and a node the reference

cell2 if cell1 and cell2 overlap. This occurs when there is a non-empty intersection of the set

of addresses cell1:start; :::; cell1:start + cell1:length and cell2:start; :::; cell2:start + cell2:length.

For example, if cell1 represents an assignment to a structure and cell2 represents a use of a �eld

in this structure then the two cells overlap. Notice that an assignment to a �eld of the structure

may only modify part of the cell (the same is true of assignments to an element of an array). In

the following de�nition, the function PreCell(cell1; cell2) denotes the part of cell1 before cell2.

Likewise, PostCell(cell1 ; cell2) denotes the part of cell1 after cell2.

De�nition 11 DRD in the presence of unconstrained pointers. Let cell0 = def(last node).

DRD(cell; empty) = ;

DRD((address; 0); history) = ;

DRD(cell; < previous history j last node >) =

8><
>:

DRD(cell; previous history) if cell \ cell0 = ;

last node [DRD(PreCell(cell; cell0); previous history)

[DRD(PostCell(cell; cell0); previous history) otherwise

This technique works well when dealing the kind of error shown in the following code (note

that di�erent compilers may lay memory out di�erently):

{

int i, j, a[4];

j = 2;

for (i=0; i<=4; i++)

a[i] = 0; /* incorrectly assigns j=0 when i = 4 */

print j;

}

When i = 4, the cell de�ned by a[i] = 0 and the cell for j overlap (the are identical in

this example). A static slice with respect to j at the end of the program would only include

the assignment j = 2. However, the dynamic slice using the above de�nition of dynamic data

de�nition includes the assignment \a[i] = 0" and the enclosing for loop. An indication that j is

getting clobbered by the loop.

31

2.5 Alternative Approaches to Computing Program Slices

2.5.1 Denotational Program Slicing: Functional Semantics

Hausler [39] has developed a denotational approach for slicing structured programs. This ap-

proach uses the functional semantics of the \usual" restricted structured language; one with

scalar variables, assignment statements, if-then-else statements, and while statements. The

Mills' semantics [60] is de�ned for the language; the meaning of the program is determined by

a mapping from the variables to values.

In the Mills' semantics, programs are constructed by composition of statements (i.e. func-

tions from state to state). This permits the de�nition of a sliceable subprogram: any sequence

of statements with the last j statements deleted. Thus slices can be taken at arbitrary points

in the program.

The function

� : statements� variables ! variables

captures the relevant sets. While the function

� : statements� variables ! statements

captures the slice. These two functions are de�ned semantically for each language construct.

This yields a precise \Millsian" slice; moreover, gives primitive recursive �nite upper bounds on

the number of times repetitive statements must be iterated to obtain the slice. These bounds

are linear in the number of assignment statements in the program.

2.5.2 Denotational Program Slicing: Descriptive Semantics

Venkatesh [91] also looked at denotational slicing with the aim of separating semantically based

de�nitions of a program slice from the justi�cation of the algortihm to compute the slice. He has

constructed a three dimensional framework for the comparison and analysis of the de�nitions of

a slice:

1. Executable or Closure5

2. Forward or Backward

3. Static or Dynamic

and then gives semantic de�nitions of the 8 combinations.

In [91] the idea of \contamination" was introduced as an extension to the usual semantics of

the language in order to clarify the di�erences of the concepts. This notion is further elaborated

on in [34] as a form of error propagation to slice functional programs. In both instances,

5\Closure" comes from the graph-theoretic method used to compute the slice.

32

contaminated values are tracked via the semantics; in the end all contaminated expressions are

those that are in the forward slice.

Tip [89] gives an alternative characterization using 4 criteria:

1. Computation Method: Data-Flow, Functional, or Graph-Reachability

2. Interprocedural Solution or not

3. Control Flow: Structured or Arbitrary

4. Data types: Scalars, Composites, Pointers.

2.5.3 Information Flow Relations

Bergeretti and Carr�e [13] construct three binary information
ow relations on a structured

subset of a Pascal-like language. These relations are associated with each program statement

(and hence inductively over the entire language). The �rst relation, �, over V � V , where

V is the set of variables of the program, associates values of program variables on entry to a

statement, S, with values of variables on exit from S. This can be loosely interpreted as \the

value of v on entry to S may be used in the evaluation of the expression e in S." This relation

is a formalization of the results of Denning and Denning [25] in secure information
ow.

The second relation, �, also over V � V , associates values of variables on entry to statement

S with the value(s) of the expression parts in S. That is, \the value of v on entry to S may be

used in obtaining the value w on exit from S." The entry value of v may be used in obtaining

the value of some expression e in S, that in turn may be used in obtaining the exit value of w.

The third relation, �, over E�V where E is the set of expressions in the program, associates

an expression e with a variable v for statement S i� \a value of expression e in S may be used

in obtaining the value of the variable v on exit from S." For example, if S is the assignment

statement \a := b+ c" then

�(S) = f(b; a); (c; a)g

�(S) = f(b; a); (c; a)g [f(v; v) � (a; a) j v � V g

�(S) = f(b+ c; a)g

Transitive closure of the � relation permits construction of a partial program associated with

a variable. This partial program is a program slice taken with respect to the variable at the

last statement of the program. Relation � is related to the edges of a dependence graph. For

example, it need only be computed once after which a program slice can be computed in linear

time.

33

2.5.4 Parametric Program Slicing

Parametric program slicing [27] uses graph rewriting to compute constrained slices. The con-

straint refers to the amount of input available. A fully constrained slice (where input has a

�xed constant value) is a dynamic slice, while a fully unconstrained slice is a static slice. A

partially constrained slice is computed when some inputs have known values. The resulting slice

is smaller than a static slice, but does not require complete execution of the program as with a

dynamic slice.

Constrained slices are computed using a term graph rewriting system [9]. As the graph is

rewritten, modi�ed terms and sub-terms are tracked. As a result, terms in the �nal (completely

rewritten) graph can be tracked back to terms in the original graph. This identi�es the slice

of the original graph that produced the particular term in the �nal graph. A minimal amount

of syntactic post processing is necessary to convert this \term slice" into a syntactically valid

sliced program.

2.5.5 Dynamic Slicing using Dependence Relations

Gopal describes a technique for computing dynamic slices using dependence relations [35]. This

approach abstracts from the program three relations at each statement S:

1. Sv: the dependence of statement S on the input value of variable v.

2. vS: the dependence of output variable v on statement S.

3. vu: the dependence of output variable v on the input value of variable u.

Rules are given for di�erent statement kinds (e.g., assignment and conditional statements)

and for sequences of statements. For example, the rules for the composition of statements S1

and S2 are as follows (� represents the composition operator):

1. Sv � S1
v [(S2

v � v
1
u)

2. vS � v2S [(v2u � v
1
s)

3. vu � (vs � Sv) [(S2
v \ S1

v)

2.5.6 Parallel Slicing

Danicic, et al. [37] introduce a parallel algorithm for computing backward, static slices. This is

accomplished by converting the CFG into a network of concurrent processes. Each process sends

and receives messages that names the relevant sets of variables. The signi�cant contribution of

this work is that the algorithm outputs the entire set of criteria which would yield the computed

slice. Thus the set of all criteria of a given program is partitioned into equivalence classes, with

the slice itself used as the partitioning relation.

34

2.5.7 Value Dependence Graphs

The value dependence graph, (VDG) [92], is a data
ow-like representation that evolved from

an attempt to eliminate the control
ow graph as the basis of the analysis phase and using

demand dependences instead. The VDG is a representation that is independent of the names

of values, the locations of the values, and when the values' are computed. It is a functional

representation that expresses computation as value
ow. A value is computed if it is needed.

Thus, VDG requires explicit representation of stack and heap allocators, I/O ports, etc, so that

value can be obtained. Loops are represented as function calls, so no backward pointing edges

are required, as in the CFG. The VDG has two advantages that make it suitable for program

slicing: all operands are directly connected to the inputs (via the functional semantics) and the

computation is expressed as value
ow. So a single VDG represents the slices for every possible

computation. The drawback to this approach is that points of computation are lost; values are

the only sliceable objects.

3 Applications of Program Slicing

This section describes how program slicing is used in a collection of application domains. In

applying slicing to these domains several variations on the notions of program slicing as describe

in Section 2 are developed. The order of this section in not necessarily the historical order in

which the problems were addressed. Rather, they are organized to facilitate presentation. For

example, the di�erencing techniques described in Section 3.1 grew out on the integration work

described in Section 3.2.

3.1 Di�erencing

Programmers are often faced with the problem of �nding the di�erences between two programs.

Algorithms for �nding textual di�erences between programs (or arbitrary �les) are often insuf-

�cient. Program slicing can be used to identify semantic di�erences between two programs.

There are two related programs di�erencing problems:

1. Find all the components of two programs than have di�erent behavior.

2. Produce a program that captures the semantic di�erences between two programs.

Dependence graphs solutions to both problems have been given. The only reason for not using

the data-
ow approach is e�ciently; the solutions require multiple slices of the same program,

which can be done in linear time using dependence graphs.

For programs old and new, a straightforward solution to Problem 1 is obtained by com-

paring the backward slices of the vertices in old and new's dependence graphs Gold and Gnew.

Components whose vertices in Gnew and Gold have isomorphic slices (see [45] for a de�nition of

35

isomorphic slices) have the same behavior in old and new [86]; thus, the set of vertices from

Gnew for which there is no vertex in Gold with an isomorphic slice safely approximates the set

of components new with changed behavior. This set is a safe as it is guaranteed to contain all

the components with di�erent behavior. It is (necessarily) an approximation because the exact

di�erencing problem is unsolvable.

We call the vertices in Gnew with di�erent behavior than in Gold the set of a�ected points.

The complexity of the straight forward solution for �nding a�ected points outlined above is

cubic in the size of Gnew (slice isomorphism can be determined in linear time [45]). This set

can be e�ciently computed in linear time using a single forward slice starting from the set of

directly a�ected points: those vertices of Gnew with di�erent incoming dependence edges than in

Gold [21].

A solution to the second di�erencing problem is obtained by taking the backward slice

with respect to the set of a�ected points. For programs with procedure and procedure calls,

two modi�cations are necessary: First, the techniques described at the end of Section 2.2.2

are required to ensure the resulting program is executable. Second, this solution is overly

pessimistic: consider a component c in procedure P that is called from two call-sites c1 and c2.

If c is identi�ed as an a�ected point by a forward slice that enters P through c1 then, assuming

there is not other connection, we want to include c1 but not c2 in the program that captures

the di�erences. However, the backward slice with respect to c would include both c1 and c2. A

more precise solution can be obtained by using a combination of the individual interprocedural

slicing passes describes in Section 2.2.2 [21].

3.2 Program Integration

The program integration operation concerns the problem of merging program variants [15, 21,

43]. Given a programBase and two variants, A andB, each created by modifying separate copies

of Base, the goal of program integration is to determine whether the modi�cations interfere,

and if they do not, to create an integrated program that incorporates both sets of changes as

well as the portions of Base preserved in both variants. The need for program integration arises

when a system is \customized" by a user and simultaneously upgraded by a maintainer, and the

user desires a customized, upgraded version; or when several versions of a program exist and

the same enhancement or bug-�x is to be made to all of them.

The integration algorithm uses program di�erencing to identify the changes in Variants A

and B with respect to Base. Preserved components are those components that are not a�ected

in A or B. This set is safely approximated as the set of components with isomorphic slices in

Base, A, and B. A merged program is obtained by taking the graph union of the (dependence

graph for) the di�erences between A and Base, the di�erences between B and Base, and the

preserved components. This program is then checked for interference. Interference exists if the

changes in Variant A and Variant B are incompatible. If there is no interference a merged

program is produced that captures the changed behavior of A and B along with the preserved

36

behavior of all three programs.

While it isNP -hard[43], an important property of the algorithm is that it is semantics-based.

An integration tool makes use of knowledge of the programming language to determine whether

the changes made to Base to create the two variants have undesirable semantic interactions;

only if there is no such interference will the tool produce an integrated program. The algorithm

also provides guarantees about how the execution behavior of the integrated program relates to

the execution behaviors of the base program and the two variants.

3.3 Software Maintenance

Software maintainers are faced with the upkeep of programs after their initial release and face

the same problems as program integrators: understanding existing software and making changes

without having a negative impact on the unchanged part. A new kind of slice, called a decom-

position slice [32], is useful in making a change to a piece of software without unwanted side

e�ects.

While a slice captures the value of a variable at a particular program point (statement), a

decomposition slice captures all computations of a variable and is independent of program loca-

tion. A decomposition slice is useful to a maintainer when, for example, variable v is determined

to have a value to be changed. A di�erencing tool based on decomposition slicing, called the

Surgeon's Assistant [28, 32], partitions a program into three parts (assume the computation of

variable v is to be changed):

Independent Part. Statements in the decomposition slice taken with respect to v that are

not in any other decomposition slice.

Dependent Part. Statements in the decomposition slice taken with respect to v that are in

another decomposition slice.

Compliment. Statements that are not independent (i.e., statements in some other decompo-

sition slice, but not v's).

Variables can be similarly categorized:

Changeable. All assignments to the variable are within the independent part.

Unchangeable. At least one assignment to the variable is in a dependent part. If the main-

tainer modi�es this statement, the new value will
ow out of the decomposition.

Used. Variables used in the compliment but not in the independent or dependent parts. The

maintainer may not declare new variables with these names.

37

For a maintainer trying to change the code, only independent and dependent statements

(i.e., the decomposition slice taken with respect to v) are of interest. Furthermore, the Surgeon's

Assistant only allows modi�cations of the independent part and changeable variables (and newly

declared variables). The advantage of this approach is that after making a modi�cation only

the independent and deppendent parts need be tested. The complement is guaranteed to be

una�ected by the change; testing on the complement is unnecessary[31]. Finally, a program is

formed by merging the modi�ed independent part and the unchanged compliment. This can be

done in linear time[30], without adverse side a�ects to computations in the compliment. The

result is a modi�ed and tested program.

3.4 Testing

Software maintainers are also faced with the task of regression testing: retesting software after

a modi�cation. This process may involve running the modi�ed program on a large number of

test cases, even after the smallest of changes. Although the e�ort required to make a small

change may be minimal, the e�ort required to retest a program after such a change may be

substantial. Several algorithms based on program slicing have been proposed to reduce the cost

of regression testing. While decomposition slicing eliminates the need for regression testing on

the complement, there still may be a substantial number of tests to be run on the dependent,

independent and changed parts. Slicing can be used to reduce the number of these tests.

The following algorithms assume programs are tested using test data adequacy criterion:

a minimum standard that a test suite (a set of test cases) must satisfy. An example is the

all-statements criterion, which requires that all statements in a program be executed by at least

one test case in the test suite. Satisfying an adequacy criterion provides some con�dence that

the test suite does a reasonable job of testing the program [11, 79, 20].

Gupta et. al., present an algorithm for reducing the cost of regression testing that uses

slicing to determine components a�ected transitively by an edit at point p [36]. They consider

a variety of di�erent types of edits (statement addition, statement deletion, modi�cation of

the variables used in a statement, etc.) While some of these require simpli�ed versions of the

following procedure, in general two slices are used. The �rst slice is a backward slice from p.

De�nitions in this slice of variables used at p are recorded. The second slice is a forward slice

also starting from p. Uses in this slice of variables de�ned at p are recorded. Def-Use pairs from

a de�nition in the �rst slice to a use in the second are potentially a�ected by the change and

must be retested.

Bates and Horwitz present test case selection algorithms for the all vertices and all
ow-

edges test data adequacy criterion [11]. The key to their algorithm is the notion of equivalent

execution patterns. Two program components with equivalent execution patterns are executed

by the same test cases [11]. Consider, for example, a component old from a tested program

and component new of a modi�ed version of this program. If test case t tests old, and old and

new have equivalent execution patterns then test case t is guaranteed to test new. No new test

38

case need be devised (even if new does not exist in the original program). The algorithms only

selects tests that test changed portions of the modi�ed program.

Components with equivalent execution patterns are identi�ed using a new kind of slice called

a control slice. A control slice, which is essentially a slice taken with respect to the control

predecessors of a vertex, includes the statements necessary to capture \when" a statement is

executed without capturing the computation carried out at the statement.

The notion of equivalent execution patterns is to strong in the presence of procedures and

procedure calls because it does not separate di�erent calling-contexts (i.e., di�erent chains of

call sites). Consider a simple program with two procedures main and P where main calls P . If

another call to P is added tomain then the control slice for any component in P will include this

new call and therefore cannot be isomorphic with any control slice from the original program.

Consequently two such components cannot have equivalent execution patterns.

Calling context is more accurately accounted for by replacing equivalent execution patterns

with the weaker notions of common execution patterns [20]. Components with common execution

patters have equivalent execution patterns in some calling context. These components are

identi�ed using another kind of slice called a calling-context slice, which applies the second pass

of backward slicing algorithm described in Section 2.2.2 \back" through the sequence of call-sites

that make up a calling-context.

Program di�erencing can be used to further reduce the cost of regression by reducing the size

of the program that the tests must be run on [17]. For a small change, the program produced

using the program di�erencing techniques described in Section 3.1 is considerably smaller and

consequently requires fewer resources to retest, especially when run on the reduced test set

produced by any of the above algorithms.

3.5 Debugging

Program slicing was discovered as an operation performed by experienced programmers when

debugging code [95, 93]. Programmers, given a piece of code with a bug in it, were asked to

describe the code after removing the bug. They could reproduce certain \parts" of the code

almost exactly, while others they could not. These parts were not continuous blocks of text

(e.g., �les, procedures, or functions), but rather they were what we now call program slices.

Formalization of this debugging activity lead to the �rst algorithms for program slicing [93, 94].

Turning this around, a tool that computes program slices is a valuable aid in debugging. It

allows the programmer to focus attention on those statements that contribute to a fault. In

addition, hilighting a slice assists in uncovering faults caused by a statement that should be in

a slice but is not.

Several kinds of slices are useful in debugging. First, dynamic slicing is one variation of

program slicing introduced to assist in debugging [53, 54]. When debugging, a programmer

normally has a test case on which the program fails. A dynamic slice, which normally contains

less of the program than a static slice, is better suited to assist the programmer in locating a

39

bug exhibited on a particular execution of the program. As seen in section 2.4.1, dynamic slicing

can even assist in �nding bugs caused by invalid pointers or array subscripts.

Slicing is also useful in algorithmic debugging, which applies the following algorithm to the

debugging process: starting from a external point of failure (e.g., an arrant output value), the

debugging algorithm localizes the bug to within a procedure by asking the programmer a series

of questions. These questions relate to the expected behavior of a procedure. For example,

\should add(4; 2) return 6?" Based on these answers, procedures that have the expected output

are treated as working, while procedures that produce unexpected answers are \opened." This

means the debugger attempts to determine if the calls in the procedure produce expected results.

Algorithmic debugging terminates ends at a procedure with no calls or in a procedure in which

all the calls produce the expected output.

One draw back of algorithmic debugging is its asking questions about procedures that do

not e�ect a buggy result. Program slicing can be of assistance here [50]: any call not in the slice

with respect to the buggy output can be ignored; it cannot a�ect the buggy result. Further,

parameters that are not in the slice, even for a call that is, can also be ignored.

Debugging was also the motivation for program dicing and latter program chopping. Dicing

uses the information that some variables fail some tests, while other variables pass all tests,

to automatically identify a set of statements likely to contain the bug [66]. A program dice is

obtained using set operations on one or more backward program slices. Some dices are more

interesting than others. The interesting ones include the intersection of two slices, and the

intersection of slice A with complement of slice B. The �rst dice, which identi�es common code,

is helpful in locating bugs when two computations are both incorrect assuming all incorrectly

computed variables are identi�ed and no program bug masks another bug [66]. This dice is also

useful in ensuring software diversity in safety critical systems. If for example, the computation of

trip-over-temperature-sensor and trip-over-pressure-sensor include the same computation (often

a function call) then this computation is in the dice taken with respect to the two trip signals.

Such a computation is of interested in safety critical systems because a bug in this computation

may cause both sensors to fail.

The second dice, which yields code unique to A, is helpful in locating bugs in computation

on A if computation of B is correct. For example, consider a program that counts the number

of words and characters in a �le. If the �nal value of character count is correct, but the

�nal value of word count is not then the second kind of dice could be applied. In this case, it

contains statements that a�ect the value of word count but not the value of character count.

This implies the looping and reading of characters from the �le need not be considered.

The original work on dicing considered only backward slices. Incorporating forward slices

increases the usefulness of dicing. For example, the notion of program chopping identi�es the

statement that transmit values from a statement t to a statement s [49]: chop(t; s) includes those

program points a�ected by the computation at program point t that a�ect the computation at

program point s. A program chop is useful in debugging when a change at t causes an incorrect

result to be produced at s. The statements in chop(t; s) are the statements that transmit the

40

e�ect of the change at t to s. Debugging attention should be focused there. In the absence of

procedures, chop(t; s) is simply the intersection of the forward slice taken with respect to t and

the backward slice taken with respect to s and can be viewed as a generalized kind of program

dice. The same is not true for interprocedural chopping [85].

As initially introduced, s and t must be in the same procedure, P , and only components from

P are reported. This was later generalized to allow s and t to be in di�erent procedures and

to contain components for procedure other than P [85]. It is interesting to note that for inter-

procedural chopping the dicing idea of intersections a forward and backward slice is imprecise.

Interprocedural version of other set theoretic operations on slices that work with intraprocedural

slices, have eluded researchers [81]. Precise interprocedural chopping is addressed in [85].

3.6 Software Quality Assurance

Software quality assurance auditors are faced with a myriad of di�culties, ranging from inad-

equate time to inadequate computer-aided software engineering (CASE) tools [33]. One par-

ticular problem is the location of safety critical code that may be interleaved throughout the

entire system. Moreover, once this code is located, its e�ects throughout the system are di�-

cult to ascertain. Program slicing is applied to mitigate these di�culties in two ways. First,

program slicing can be used to locate all code that contributes to the value of variables that

might be part of a safety critical component. Second, slicing-based techniques can be used to

validate functional diversity (i.e., that there are no interactions of one safety critical component

with another safety critical component and that there are no interactions of non safety critical

components with the safety critical components).

A design error in hardware or software, or an implementation error in software may result

in a Common Mode Failure of redundant equipment. A common mode failure is a failure as a

result of a common cause, such as the failure of a system caused by the incorrect computation

of an algorithm. For example, suppose that X and Y are distinct critical outputs and that X

measures a rate of increase whileY measures a rate of decrease. If the computation of both of the

rates depends on a call to a common numerical di�erentiator, then a failure in the di�erentiator

can cause a common mode failure of X and Y.

One technique to defending against common mode failures uses functional diversity. Func-

tional diversity in design is a method of addressing the commonmode failure problem in software

that uses multiple algorithms on independent inputs. Functional diversity allows the same func-

tion to be executed along two or more independent paths.

One technique to solve this problem combines Fault Tree Analysis and program slicing. Once

the system hazards have been identi�ed, the objective of fault tree analysis is to mitigate the

risk that they will occur. One approach to achieving this objective is to use system fault tree

analysis. Under the assumption that there are relatively few unacceptable system states and

that each of these hazards has been determined, the analysis procedure is as follows. The auditor

assumes that a hazard has occurred and constructs a tree with the hazardous condition as the

41

root. The next level of the tree is an enumeration of all the necessary preconditions for the

hazard to occur. These conditions are combined with logical and and or as appropriate. Then

each new node is expanded \similarly until all leaves have calculable probability or cannot be

expanded for some reason"[59].

System fault tree analysis gives the auditor the sub-components of the system that must

be carefully examined. Part of this examination is the validation that there are no interactions

with non-critical functions. The determination of the speci�c components that will be examined

is up to the auditor. This information should be obtainable from the design documentation.

Slicing is used as an aid to validating safety as follows. First, the auditor uses system fault

tree analysis to locate critical components. The software that is invoked when a hazardous

condition occurs is identi�ed in the system. The auditor then locates the software variables

that are the indicators of unsafe conditions. Program slices are extracted on these \interesting"

variables. These slices can be used to validate that there are no interactions between critical

components or with non-critical components using program dicing.

Program slices can also be used to assure diversity: computed from the outputs of individual

hazards can be examined to determine the logical independence of the events. For instance, if

A and B are two critical conditions, the dice computed by intersecting the program slices on

these two conditions provides partial information on whether or not both conditions can occur

simultaneously. If the dice is empty then there is no way that the software can guarantee that

both will not occur simultaneously (there may be other ways the verify that both will not occur).

If the dice in not empty, inspection of the overlap may prove that both conditions cannot occur

together (although the functional diversity of such computations is suspect).

These program projections can also be highlighted for more vigorous analysis, inspection

and testing. A static program slice can be further re�ned by examining the trajectory of speci�c

inputs through the program; dynamic slices are used to observe individual instances of the

computation. This simpli�es the tedious task of the auditor and permits undivided attention to

be focused on the analytic portions of the audit.

The utility of a slicing tool comes from automating the task of �nding statements that are

relevant to a computation. Without any tool, the software quality assurance auditor evaluating

functional diversity would examine the program under consideration until outputs were identi�ed

that should be computed independently. The auditor would then try to verify independence by

reading code.

Unravel [67] is a static program slicer developed at the National Institute of Standards

and Technology as part of a research project. It slices ANSI-C programs. Its only limitations

are in the treatment of unions, forks, and pointers to functions. The tool is divided into

three main components: a source code analysis component to collect information necessary for

the computation of program slices, a link component to link
ow information from separate

source �les together and an interactive slicing component that the software quality assurance

auditor can use to extract program components and statements for answering questions about

the software being audited.

42

3.7 Reverse Engineering

Reverse engineering concerns the problem of comprehending the current design of a program

and the way this design di�ers from the original design. This involves abstracting out of the

source code the design decisions and rationale from the initial development (design recognition)

and understanding the algorithms chosen (algorithm recognition).

Program slicing provides a toolset for this type of re-abstraction. For example, a program

can be displayed as a lattice of slices ordered by the is-a-slice-of relation [32, 81, 12]. Comparing

the original lattice and the lattice after (years of) maintenance can guide an engineer towards

places where reverse engineering energy should be spent. Because slices are not necessarily

contiguous blocks of code they are well suited for identifying di�erences in algorithms that may

be span multiple blocks or procedures.

Beck and Eichmann observer that elements \towards the bottom" of this lattice are often

clich�es [12]. For example, in the word count program the slice that reads the characters from a

�le is contained in (is-a-slice-of) three other slices (these slices count the number of words, lines,

and characters in the input). The common slice is the read-a-�le clich�e.

Beck and Eichmann also propose the notion of interface slicing for use in reverse engineering.

Understanding a program often requires identifying its major abstractions and there interfaces.

An interface slice is essentially a forward slice taken with respect to the entry vertices in a

collection of procedures [12]. This projection of a general software module (e.g., a set, list, or

window widget), captures the particular behaviors required for a particular use.

An interface slice is computed from an interface dependence graph as a forward graph traver-

sal. The dual of this operation uses a backward graph traversal (i.e., traverses the dependence

edges from target to source). Starting from all calls on procedure P , this \backward" interface

slice includes the public interfaces for those procedures (from other modules) that require P .

While interface slicing is useful in reverse engineering, it seems more useful in reshaping the

development process. In particular, as Beck and Eichmann observe, a programmer with access

to a large repository of software modules often wants only part of the functionality of a module

in the repository. Presently, the programmer has two unsatisfactory options: (1) create a special

copy of the module, or (2) include unwanted code. The �rst option requires access to the source

code, which may not be possible. It also creates multiple copies of some functions from the

module, which complicates later updates. The second option increases the code size and may

degrade the performance of the compiler when optimizing the code.

Interface slicing can be used to provide a third alternative that has neither of these de�-

ciencies: the complete module is made available to the interface slicer. A programmer, desiring

partial functionality from a module, tells the interface slicer which exported functions are re-

quired. The interface slicer the produces the public interface for the required functions without

releasing the source for their implementation. Thus a specialized version of the original is made

available to the programmer without introducing a new copy or releasing proprietary source

code.

43

3.8 Functional Cohesion

Cohesion is an attribute of a software unit that purports to measure the \relatedness" of the

unit. Cohesion has been qualitatively characterized as coincidental, logical, procedural, commu-

nicational, sequential and functional, with coincidental being the weakest and functional being

the strongest[98]. Yourdon and Constantine note that functional cohesion \is an integral part

of, and is essential to, the performance of a single function."[98]

To construct a slicing-based measure of functional cohesion, Bieman and Ott [16] de�ne

data slices, a backward and forward static slice that uses data tokens (variable and constant

de�nitions and references) rather than statements as the unit of decomposition. This de�nition

ensures that any change will impact at least one slice and leads to a slice abstraction model of

the procedure under consideration: one can regard the slice as the sequence of variable tokens

that are contained in it.

The tokens that are in every data slice are referred to as super-glue; tokens that are in more

than 1 data slice are referred to as glue. The metrics are based on the ratios of the appearance

of glue and super-glue tokens in a slice. Strong Functional Cohesion is the ratio of super-glue

tokens in the slice to the number of tokens in the slice. Weak Functional Cohesion is the ratio

of glue tokens in the slice to the number of tokens in the slice.

Another method for measuring cohesion is to measure the adhesiveness of the individual

tokens. A token that glues �ve data slices together is more adhesive than a token that glues

only two data slices together. Thus, the adhesion of an individual token is the ratio of number

of slices in which the token appears to the number of data slices in a procedure.

Bieman and Ott show that these metrics form a well-de�ned, ordinal measure of the func-

tional cohesion of a program. That is, they show the orderings imposed match ones intuition.

They are unable to show that are on a ratio scale (that meaningful composition of the metrics

exist). The measures are not additive. The study of the relationship of these metrics to product

attributes such as reliability and maintainability is ongoing.

44

References

[1] H. Agrawal. Towards automatic debugging of computer programs. Technical Report SERC-

TR-40-P, Purdue University, 1989.

[2] H. Agrawal. On slicing program with jump statements. In Proceedings of the ACM SIG-

PLAN 94 Conference on Programming Language Design and Implementation, pages 303{

312, June year.

[3] H. Agrawal, R. DeMillo, and E. Spa�ord. A process state model to relate testing and

debugging. Technical Report SERC-TR-27-P, Purdue University, 1988.

[4] H. Agrawal and R.A. DeMIllo. Dynamic slicing in the presence of unconstrained pointers.

In Proceedings of the ACM Symposium on Testing and Veri�cation, October 1991.

[5] H. Agrawal and J. Horgan. Dynamic program slicing. Technical Report SERC-TR-56-P,

Purdue University, 1989.

[6] H. Agrawal and J. Horgan. Dynamic program slicing. In Proceedings of the ACM SIGPLAN

'90 Conference, 1990.

[7] T . Ball and S. Horwitz. Slicing programs with arbitrary control-
ow. In Proceedings of the

1st International Workshop on Automated and Algorithmic Debugging, (appears in Lecture

Notes in Computer Science 749), pages 206{222, 1993.

[8] J.P. Banning. An e�cient way to �nd the side e�ects of procedure calls and the aliases of

variables. In Conference Record of the Sixth ACM Symposium on Principles of Programming

Languages, (San Antonio, TX, Jan. 29-31, 1979), 1979.

[9] Barendergt, Eekelen, Glauert, Kennawar, and Plasneijer. Term graph rewriting. In In

proceedings of the PARLE Conference, Vol II: Parallel Languages, 1987.

[10] J. M. Barth. A practical interprocedural data
ow analysis algorithm. Communications of

the Association for Computing Machinery, 21(9):724{726, September 1978.

[11] S. Bates and S. Horwitz. Incremental program testing using program dependence graphs.

In Conference Record of the Twentieth ACM Symposium on Principles of Programming

Languages,. ACM, 1993.

[12] J. Beck. Program and interface slicing for reverse engineering. In Proceeding of the Fifteenth

International Conference on Software Engineering, 1993. also in Proceedings of the Working

Conference on Reverse Engineering.

45

[13] J-F. Bergeretti and B. Carr�e. Information-
ow and data-
ow analysis of while-programs.

ACM Transactions on Programming Languages and Systems, 7(1):37{61, January 1985.

[14] V. Berzins. On merging software extensions. Acta Informatica, 23:607{619, 1985.

[15] V. Berzins. Software merge: Models and methods for combining changes to programs.

International Journal on Systems Integration, 1:121{141, August 1991.

[16] J. Bieman and L. Ott. Measuring functional cohesion. IEEE Transactions on Software

Engineering, 20(8):644{657, August 1994.

[17] D. Binkley. Using semantic di�erencing to reduce the cost of regression testing. In Pro-

ceedings of the Conference on Software Maintenance - 1992, pages 41{50, November 1992.

[18] D. Binkley. Slicing in the presence of parameter aliasing. In Software Engineering Research

Forum, Orlando, FL, November 1993.

[19] D. Binkley. Precise executable interprocedural slices. ACM Letters on Programming Lan-

guages and Systems, 1-4(2), 1994.

[20] D. Binkley. Reducing the cost of regression testing by semantics guided test case selection.

In IEEE International Conference on Software Maintenance, 1995.

[21] D. Binkley, S. Horwitz, and T. Reps. Prograom integration for languages with procedure

calls. ACM Transactions on Software Engineering and Methodology, 4(1):3{35, January

1995.

[22] J. Choi and J. Ferrante. Static slicing in the presence of goto statements. ACM Transacton

on Programming Languages and Systems, 16(4):1097{1113, July 1994.

[23] J-D. Choi, B. Miller, and P. Netzer. Techniques for debugging parallel programs with

owback analysis. Technical Report 786, University of Wisconsin - Madison, August 1988.

[24] F. Cutillo, R. Fiore, and G. Visaggio. Identi�cation and extraction of domain indepen-

dent components in large programs. In Proceedings of the Working Conference on Reverse

Engineering, pages 83{92, June 1993.

[25] D. E. Denning and P. J. Denning. Certi�cation of programs for secure information
ow.

Communications of the Association for Computing Machinery, 20(7):504{513, July 1977.

[26] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in

optimization. ACM Transactions on Programming Languages and Systems, 9(3):319{349,

July 1987.

46

[27] J. Field, G . Ramalingam, and F. Tip. Parametric program slicing. In Conference Record

of the Twenty-Second ACM Symposium on Principles of Programming Languages, pages

379{392, 1995.

[28] K. Gallagher. The surgeon's assistant. In Software Engineering Research Forum, Boca

Raton, FL, November 1995.

[29] K. B. Gallagher. Surgeon's assistant limits side e�ects. IEEE Software, May 1990.

[30] K. B. Gallagher. Conditions to assure semantically correct consistent software merges in

linear time. In Proceedings of the Third International Workshop on Software Con�guration

Management, pages 80{84, May 1991.

[31] K. B. Gallagher. Using program slicing to eliminate the need for regression testing. In

Eighth International Conference on Testing Computer Software, May 1991.

[32] K. B. Gallagher and J. R. Lyle. Using program slicing in software maintenance. IEEE

Transactions on Software Engineering, 17(8):751{761, August 1991.

[33] K. B. Gallagher and J. R. Lyle. Program slicing and software safety. In Proceedings of the

Eighth Annual Conference on Computer Assurance, pages 71{80, June 1993. COMPASS

'93.

[34] M. Gandle, A. Santal, and G. Venkatesh. Slicing functional programs using collecting

abstract interpretation. In First Symposium on Algorithmic and Automated Debugging,

Linkoping, Sweeden, 1993. Short Presentation.

[35] R. Gopal. Dynamic program slicing based on dependence relations. In Proceedings of the

IEEE Conference on Software Maintenance, pages 191{200, 1991.

[36] R. Gupta, M.J. Harrold, and M.L. So�a. An approach to regression testing using slicing.

In Proceedings of the IEEE Conference on Software Maintenance, pages 299{308, 1992.

[37] M. Harman, S. Danicic, and Y. Sivaguranathan. A parallel algorithm for static program

slicing. Information Processing Letters, 1996.

[38] M.J. Harrold, B.Malloy, and G. Rothermel. E�cient construction of program dependence

graphs. In International Symposium on Software Testing and Analysis (ISSTA '93), 1993.

[39] P. Hausler. Denotational program slicing. In Proceedings of the 22nd Hawaii International

Conference on System Sciences, pages 486{494, January 1989. Volume II, Software Track.

[40] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs. In

Proceedings of the SIGPLAN 88 Symposium on the Principles of Programming Languages,

January 1988.

47

[41] S. Horwitz, J. Prins, and T. Reps. On the adequacy of program dependence graphs for

representing programs. In Proceedings of the SIGPLAN 88 Symposium on the Principles

of Programming Languages, January 1988.

[42] S. Horwitz, J. Prins, and T. Reps. Support for integrating program variants in an envi-

ronment for programming in the large. In Proceedings of the International Workshop on

Software Version and Con�guration Control 88, Grassau, Germany, January 1988.

[43] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions of programs. ACM

Transactions on Programming Languages and Systems, 11(3):345{387, July 1989.

[44] S. Horwitz and T. Reps. E�cient comparison of program slices. Technical Report 983,

University of Wisconsin at Madison, 1990.

[45] S. Horwitz and T. Reps. E�cient comparison of program slices. Acta Informatica, pages

713{732, 1991.

[46] S. Horwitz and T. Reps. The use of program dependence graphs in software engineering.

In Proceedings of the Fourteenth International Conference on Software Engineering, 1992.

[47] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In

Proceedings of the ACM SIGPLAN 88 Conference on Programming Language Design and

Implementation, Atlanta, Georgia, June 1988.

[48] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

ACM Transactions on Programming Languages and Systems, 12(1):35{46, January 1990.

[49] D. Jackson and E.J. Rollins. A new model of program dependences for reverse engineering.

In Proceedings of the Second ACM SIGSOFT Symposium on the Foundations of Software

Engineering (New Orleans, LA), December 1994.

[50] M. Kamkar. Interprocedural Dynamic Slicing with Applications to Debugging and Testing.

PhD thesis, Linkoping University, S-581 83 Linkoping, Sweeden, 1993.

[51] M. Kamkar, P. Fritzson, and N. Shahmehri. Interprocedural dynamic slicing applied to

interprocedural data
ow testing. In Proceeding of the Conference on Software Maintenance

-93, pages 386{395, 1993.

[52] K. Kennedy. A survey of data
ow analysis techniques. In Steven S. Muchnick and Neil D.

Jones, editors, Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood

Cli�s, New Jersey, 1981.

[53] B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155{

163, October 1988.

48

[54] B. Korel and J. Laski. STAD - A system for testing and debugging: User perspective. In

Proceedings of the Second Workshop on Software Testing, Veri�cation and Analysis, pages

13{20, Ban�, Alberta, Canada, July 1988.

[55] B. Korel and J. Laski. Dynamic slicing of computer programs. Journal of Systems and

Software, pages 198{195, 1990.

[56] F. Lanubile and G. Visaggio. Function recovery based on program slicing. In Proceedings

of the Conference on Software Maintenance - 1993, pages 396{404, September 1993.

[57] J. Laski. Data
ow testing in stad. The Journal of Systems and Software, 1989.

[58] J. Laski and W. Szermer. Identi�cation of program modi�cations and its application in

software maintenance. In Proceedings of the Conference on Software Maintenance - 1992,

pages 282{290, November 1992.

[59] N. Leveson, S. Cha, and T. Shimeall. Safety veri�cation of Ada programs using software

fault trees. IEEE Computer, 8(4):48{59, May 1991.

[60] R. Linger, H. Mills, and B. Witt. Structured Programming: Theory and Practice. Addison-

Wesley, Reading, Massachusetts, 1979.

[61] P. Livadas and S. Croll. A new method in calculating transitive dependences. Journal of

Software Maintenance, 1994.

[62] H. Longworth. Slice based program metrics. Master's thesis, Michigan Technological Uni-

versity, Houghton, Michigan, 1985.

[63] H. Longworth, L. Ott, and M.Smith. The relationship between program complexity and

slice complexity during debugging tasks. In COMPSAC 86, 1986.

[64] J. R. Lyle. Evaluating Variations of Program Slicing for Debugging. PhD thesis, University

of Maryland, College Park, Maryland, December 1984.

[65] J. R. Lyle and M. D. Weiser. Experiments on slicing-based debugging aids. In Elliot

Soloway and Sitharama Iyengar, editors, Empirical Studies of Programmers. Ablex Pub-

lishing Corporation, Norwood, New Jersey, 1986.

[66] J. R. Lyle and M. D. Weiser. Automatic program bug location by program slicing. In

Proceeding of the Second International Conference on Computers and Applications, pages

877{882, Peking, China, June 1987.

49

[67] J.R. Lyle, D.R. Wallace, J.R. Graham, K.B. Gallagher, J.E. Poole, and D.W. Binkley. A

CASE tool to evaluate functional diversity in high integrity software. U.S. Department of

Commerce, Technology Administration, National Institute of Standards and Technology,

Computer Systems Laboratory, Gaithersburg, MD, 1995.

[68] D. Maydan, J. Hennessy, and M. Lam. E�cient and exact data dependence analysis. In

Proceedings of the ACM SIGPLAN 91 Conference on Programming Language Design and

Implementation, Toronto, Ontario, June, 1991, ACM SIGPLAN Notices, 1991.

[69] E. Merlo, J. Girard, L. Hendren, and P. De Mori. Multi-valued constant propagation for the

reengineering of user interfaces. In Proceedings of the Conference on Software Maintenance

- 1993, pages 120{129, September 1993.

[70] K. Ono, K. Maruyama, and Y. Fukazawa. Applying a veri�cation method and a decom-

position method to program modi�cation. Trans. IEICE, J77-D-I(11), November 1994.

JAPAN.

[71] L. Ott and J. Bieman. E�ects of software changes on module cohesion. In Proceedings of

the Conference on Software Maintenance - 1992, pages 345{353, November 1992.

[72] L. Ott and J. Thuss. The relationship between slices and module cohesion. In International

Conference on Software Engineering, May 1989.

[73] K. Ottenstein and L. Ottenstein. The program dependence graph in software development

environments. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sym-

posium on Practical Software Development Environments, pages 177{184, May 1984. L.

Ottenstein is now known as L. Ott.

[74] M. Plato� and M. Wagner. An integrated program representation and toolkit of the main-

tenance of c programs. In Proceeding of the Conference on Software Maintenance, October,

1991.

[75] M. Pleszcoch, P. Hausler, A. Hevner, and R. Linger. Function theoretic principles of

program understanding. In Proceedings of the Twenty-third Annual Hawaii Conference

on System Sciences, volume 4, pages 74{81, 1990.

[76] W. Pugh and D. Wonnacott. Eliminating false data dependences using the omega test. In

Proceedings of the ACM SIGPLAN 92 Conference on Programming Language Design and

Implementation, pages 140{151, 1992.

[77] G. Ramalingam and T. Reps. A theory of program modi�cations. In S. Abramsky and

T.S.E. Maibaum, editors, Proceedings of the Colloquium on Combining Paradigms for Soft-

ware Development, pages 137{152. Springer-Verlag, 1991.

50

[78] G. Ramalingam and T. Reps. Modi�cation algebras. In Proceedings of the Second Inter-

national Conference on Algebraic Methodology and Software Technology. Springer-Verlag,

1992.

[79] S. Rapps and E.J. Weyuker. Selecting software test data using data
ow information. IEEE

Transactions on Software Engineering, SE-11(4):367{375, 1985.

[80] T. Reps. On the algebraic properties of program integration. Technical Report 856, Uni-

versity of Wisconsin at Madison, June 1989.

[81] T. Reps. Algebraic properties of program integration. Science of Computer Programming,

17:139{215, 1991.

[82] T. Reps and T. Bricker. Semantics-based program integration illustrating interference in

interfering versions of programs. In Proceedings of the Second International Workshop on

Software Con�guration Management, pages 46{55, Princeton, New Jersey, October 1989.

[83] T. Reps and S. Horwitz. Semantics-based program integration. In Proceedings of the Second

European Symposium on Programming (ESOP '88), pages 133{145, Nancy, France, March

1988.

[84] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In Proceedings of the

Second ACM SIGSOFT Symposium on Foudations of Software Engineering, pages 11{20,

1994. Published in ACM SIGSOFT Notes v19 n4.

[85] T. Reps and G. Rosay. Precise interprocedural chopping. In Proceedings of the third ACM

Symposium on the Foundations of Software Engineering (Washington, DC), October 1995.

[86] T. Reps and W. Yang. The semantics of program slicing. Technical Report 777, University

of Wisconsin - Madison, June 1988.

[87] G. Rothermel and M.J. Harrold. Selecting tests and identifying test coverage requirements

for modi�ed software. In Proceedings of the ACM SIGSOFT International Symposium on

Software Testing and Analysis, pages 169{84, August 1994.

[88] T. Shimomura. The program slicing technique and its application to testing, debugging

and maintenance. Journal of IPS of Japan, 9(9):1078{1086, September 1992.

[89] Frank Tip. Generation of Program Analysis Tools. PhD thesis, University of Amsterdam,

1995.

[90] G. Venkatesh. Experimental results from dynamic slicing of c programs. ACM Transactions

on Programming Languages and Systems, 17(2):197{216, March 1995.

51

[91] G.A. Venkatesh. The semantic approach to program slicing. In Proceedings of the ACM

SIGPLAN 91 Conference on Programming Language Design and Implementation, Toronto,

Ontario, June 26-28 1991.

[92] D. Weise, R. Crew, M. Ernst, and B. Steensgaard. Value depedence graphs: Representation

without taxation. In Proceedings of the ACM SIGPLAN-SIGACT Twenti�rst Symposium

on Principles of Programming Languages, pages 297{310, January 1994.

[93] M. Weiser. Program Slicing: Formal, Psychological and Practical Investigations of an

Automatic Program Abstraction Method. PhD thesis, The University of Michigan, Ann

Arbor , Michigan, 1979.

[94] M. Weiser. Program slicing. In Proceeding of the Fifth International Conference on Software

Engineering, pages 439{449, May 1981.

[95] M. Weiser. Programmers use slices when debugging. CACM, 25(7):446{452, July 1982.

[96] M. Weiser. Reconstructing sequential behavior from parallel behavior projections. Infor-

mation Processing Letters, 17(5):129{135, October 1983.

[97] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10:352{357, July

1984.

[98] E. Yourdon and L. Constantine. Structured Design. Prentice-Hall, Englewood Cli�s, New

Jersey, 1979.

52

