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Abstract

Program understanding is associated with the hierarchy of abstractions and interpretations that are deduced

from the code [16]. Therefore, the understanding process parallels that of the bottom-up programming process in

that maintainers begin by associating small groupings of individual instructions with higher-level interpretations.

The understanding process is repeated until the desired level of understanding is attained.

Program understanding in this context requires the identi�cation and study of the numerous complex inter-

relationships that are induced by the data 
ow, calling, and functional dependencies that exist in the software.

Therefore, an environment is needed in order aid the programmer in understanding software. The internal program
representation (IPR) plays a critical role in the nature of that environment.

In an earlier paper, we discussed both an internal program representation and an environment that conforms

to the requirements stated above.[11] The internal program representation, the system dependence graph (SDG),

is a directed labeled multigraph that captures all control and data dependences, as well as the calling context of

procedures; it is based on the one proposed in [8]. The toolset is referred to as Ghinsu and it supports a number

of tasks over a program written in a subset of ANSI C such as slicing, dicing, and ripple analysis.

In this paper we will present some background on the problems associated with program understanding and

show how the Ghinsu toolset can aid the programmer in understanding software.

1 Introduction

Software maintenance is an expensive, demanding, and ongoing process. Boehm [3] has estimated that one US

Air Force system cost $30 per instruction to develop and $4,000 per instruction to maintain over its lifetime. This

case may be exceptional, but the maintenance costs for a large embedded system seem to be an average of two to

four times the development costs. It is generally recognized that the primary reason that software maintenance

is so costly is that each modi�cation requires �rst and foremost that the software be understood. A program is

said to be understood if an overall interpretation of the program is achieved. Most of the proposed models fall

into one of the two categories: code-driven (bottom-up) or problem-driven (top-down) [4, 5, 15].

We hypothesize that both strategies are employed by the programmers engaged in this activity. We also support

the notion that di�erent maintenance tasks require di�erent kinds of program understanding, and therefore

di�erent processes are required. As an example, consider the code segment below.

( 1). sum = 0;

( 2). read(next);

( 3). while (next>=0) do

( 4). begin

( 5). sum = sum + next;

( 6). read(next);

( 7). /* do something(next); */



( 8). end;

( 9). write(sum);

(10). write(next);

We can identify several di�erent kinds of program understanding such as the following:

1. Understanding that the de�nitions of sum that can directly a�ect the use of sum at statement (5) are at

statements (1) and (5).

2. Understanding that the de�nitions that directly a�ect statement (5) are at statements (1), (2), (5), and

(6).

3. Understanding that the value of sum at statement (9) depends on the statements (1), (2), (3), (5), and (6).

4. Understanding that the segment adds up a number of input values until it reads a negative value, after

which it prints the result and the last value read.

5. Understanding that the author assumes that the source of input values is non-empty.

6. Understanding that the segment determines the sum of all scores in the recent exam of the class CS201.

This example illustrates the two principal domains of program understanding: the programming and the

application domain. The �rst four kinds of understanding belong to the programming domain, and represent

an extrapolation of the code's intent in terms of standard programming interpretations and problem solving

techniques. The �fth kind belongs to the application domain, and di�ers from the rest because it represents an

abstraction of the code's intent in terms of a speci�c application. This domain lies outside of the domain of

program interpretations, and requires program documentation for understanding.

Program understanding is associated with the hierarchy of abstractions and interpretations that are deduced

from the code [16]. Therefore, the understanding process parallels that of the bottom-up programming process in

that maintainers begin by associating small groupings of individual instructions with higher-level interpretations.

The understanding process is repeated until the desired level of understanding is attained.

Program understanding in this context requires the identi�cation and study of the numerous complex inter-

relationships that are induced by the data 
ow, calling, and functional dependencies that exist in the software.

Program segments are not just as simple as the example above may erroneously indicate. The example con-

tains only localized interactions. As Letovsky and Soloway [9] have established, programmers have di�culty

understanding code that has non-local interactions. For example, if the call to procedure do something is un-

commented, it is not clear which of the de�nitions of sum can reach the use of sum at statement number (5). The

answer to this question depends on whether or not the variable sum is de�ned (as a global variable) in the body

of the procedure do something, or by some other procedure that do something invokes (directly or indirectly)

before it returns.

Given the complexity of the task, is not surprising therefore that programmers spend approximately 60% of the

maintenance time "looking at" code [19]. Therefore one can conclude that maintenance quality and productivity

can be improved by supplying the maintainer with a set of proper tools that he/she may employ for understanding

the target software.

On the other hand, a number of organizations have found that simply purchasing new tools does not automat-

ically increase productivity [1]. What is needed is the creation of a process for each type of understanding that

uses a set of tools designed within the framework of this process. These tools should allow the maintainer to ask

questions about a program and be provided with precise answers.
In order to study tool-assisted program understanding, we must provide an e�ective environment for under-

standing programs. Such an environment should be integrated with the existing software maintenance tools and

should provide additional facilities to support other software engineering activities. We have already developed

much of this environment, but some research issues remain. For example, the answers that the understanding

tool provides should be presented to the programmer in a way that best improves the maintainer's understanding

of the program relationships. This task is not trivial because of the large amount of dependencies in a software.



Furthermore, the maintenance tools should have a fast interactive response time. Otherwise, the maintainers will

be discouraged from using them.

Realizing the need for such an environment, two and half years ago we embarked upon the task of developing

such an environment and tools and turning the theoretical concepts into practical realities, with the support of

the Software Engineering Research Center1. We have made considerable progress towards these goals.

The key element of our system is its internal program representation (IPR), the System Dependence Graph,
or SDG. The SDG is a parse tree representation of the program. The nodes represent program constructs,

in and out parameters, call-sites, etc. The edges represent various kind of dependencies (such as data 
ow,

control 
ow, and declaration) among the nodes to which they are adjacent. The main bene�t of this structure

is that it represents a vast amount of information that could be shared by numerous software engineering tasks.

These applications typically use the same kind of information, but use di�erent representations. Our approach

eliminates the redundancies. Since all algorithms use the SDG as the underlying structure, they are source

language independent.

The environment, referred to as Ghinsu, supports a number of tasks such as program slicing, dicing, ripple

analysis, dependency analysis, DU-chain, UD-chain, and reaching de�nitions calculation as well as a host of

browsing activities.

The remainder of this paper is organized as follows. The next section presents background on slicing, dicing,

and ripple analysis. We then brie
y describe the internal program representation and how it is derived. Finally

we present a tour of the Ghinsu toolset and show some of its major functions and tools.

2 Background

From our perspective, the most important concept is that of a static slice, since it is used to build the SDG.

In addition, a slicing tool can provide useful information for the software maintainer.

Slicing provides a way to decompose a large program into smaller, independent components. Let P be a

program, p be a statement in P , and V be a subset of the variables of P . Weiser de�nes as a static slice of P
relative to the slicing criterion < p; V > to be the set of all statements and predicates of P that might a�ect the
values of variables in V at the statement p. Weiser reports experimental results that experienced programmers

use slicing when debugging [17]. Weiser found that programmers remembered the slice relevant to the bug as

having been used or probably having been used in almost half the cases examined. When debugging, programmers

view programs in ways that need not conform to the program's textual or modular structures. In particular, the

statements in a slice may be scattered throughout the code of the larger program. Yet, experienced programmers

routinely abstract these slices from a program. Weiser concluded that since programmers remembered the relevant

slices from the program they had debugged, they were probably mentally constructing and using these slices while

debugging. Presumably each programmer had independently developed the slicingmethod. If novice programmers

were taught the concept of slicing, they could avoid this reinvention and learn debugging techniques faster.

Since debugging is a process in which programmers try to better understand code to �nd and eliminate bugs,

and since programmers �nd slices when debugging, it is logical that a tool that automatically creates program

slices would be useful not only in debugging but also in code understanding [17].

Suppose that during testing, we �nd that the value of a certain variable, v, is incorrectly computed at statement

n. By obtaining a slice of v at n, we may extract a signi�cantly smaller piece of code than the entire program in

which to locate the bug. If the value of another variable, w, is computed correctly at statement n, then we may

employ a method that was suggested in [13] and is referred to as dicing (computing the intersection of two slices).

The bug is likely to be associated with one or more statements in a set referred to as the Fault Prone Statement
Set (FPSS), which is the set of statements associated with the slice on v minus those associated with the slice on

w. The FPSS is obtained by generating the complement of the slice on w relative to the slice on v.

If a large program computes the value of a variable x and the code associated with this function is needed in

another application, then one could slice on this variable and use the extracted program in the latter application.

Therefore, program slicing aids in code reuse.

1Funded by the National Science Foundation, the Center's 15 industrial a�liates, and the Florida High Technology and

Industry Council.



The number of slices, their spatial arrangement, etc., may hold signi�cant information about the structuring

of a program [17]. Hence, an assortment of program metrics can be computed and their actual signi�cance

investigated. Useful metrics include coverage, overlap, clustering, and tightness.

Ripple analysis identi�es the statements that will be a�ected when a change is to be made at a given statement

(i.e, ripple analysis is \forward" slicing). A program maintainer can examine the ripple of a statement to help

determine the possible e�ects of a proposed modi�cation.

Structured walkthroughs and code inspection activities would be easier to perform by calculating interproce-

dural reaching de�nitions (the set of statements s0 which reach a statement s) , DU-chains (a chain that links a

use to all de�nitions that may reach it), and UD-chains (a chain that links a de�nition to all of its possible uses).

Furthermore, run-time support can be provided through automatic data generation (by using the calculated

UD and DU-chain information). Dynamic slicing, and other pertinent tools that can be built by using the SDG

to instrument the generated code. Most of our tools can be run on incomplete programs provided that they are

compilable. Hence, these tools can be used even at the development stage.

SA
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Figure 1: The SDG corresponding to the code in Figure 4.

We have also developed an object �nder that uses information from the SDG to group together related types,

data, and routines [10, 12]. We note that this tool can help objectify code and capture the objects that the

original designer had in mind.

3 The Internal Program Representation

Weiser's slicers [18] were based on a 
ow-graph representation of programs. Ottenstein et al. [14], show that an

intraprocedural slice could be found in linear time by traversing a suitable graph representation of the program that

they referred to as the program dependence graph (PDG). Horwitz et al. [8] introduce algorithms to construct

interprocedural slices by extending the program dependence graph to a supergraph of the PDG, which is referred



to as the system dependence graph (SDG). This extension captures the calling context of the procedures which

was lacking in the method proposed by Weiser.

This new approach not only permits more precise slices than [18], it also permits slicing when the program

contains calls to unknown procedures (procedures whose bodies are not available), provided that the transitive
dependencies (discussed later) are known. As was pointed out in [14], the internal program representation (IPR)

chosen plays a critical role in the software development environment. An example of a SDG is shown in Figure 1

We have developed a prototype that accepts programs written in ANSI C or Pascal and generates a parse tree
based SDG. We have implemented tools such as a slicer, dicer, ripple analyzer, dependency analyzer, DU-chains,

UD-chains, a reaching de�nitions calculator (even if these de�nitions or chains span procedure boundaries), and

a browser that utilize this SDG.

The grammar proposed in [7] consists of a single (main) program and supports scalar variables, assignment

statements, conditional statements, and while loops, but does not support variable declarations. The language

consists of a collection of procedures whose parameters are passed by value-result, and which end with return

statements. These return statements can not be arbitrarily located in the procedure, nor can they actually

return values to their calling procedure(s).

Begin

int x;

int y;

y = y+x;

y = 5;

while (x < y) {

x = x + 1;

if ( x == 3 )

goto Label
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Figure 2:

We extend this grammar and consequently modify the SDG as follows: First, variable declarations are sup-

ported. Second, we distinguish between pass-by-value and pass-by-reference parameters. The same notation is

employed as in C, in order to determine the type of parameter passing. However, pointer operations are re-

stricted to those that constitute pass-by-reference parameters; i.e., if x and y are pointer variables, we permit

assignments of these variables such as *x = 4 and *y = *x (where * denotes a de-referencing of the contents

of the variables). Third, any number of return statements are permitted to appear anywhere in a procedure.

These return statements can contain expressions that may include variables and are modeled after the return

statements in C. Fourth, we distinguish among functions that return values as opposed to those that do not.

Fifth, all C constructs are handled except long jumps. Finally, we use a parse tree as the basis of our SDG. This
allows slicing to be more precise than if the \resolution" of the SDG was only at the statement level.



Even though the SDG and the slicing algorithm are based on the work proposed in [8], our methods are

considerable extensions of previous works. First, our grammar is a superset of the grammar targeted in [8].

Second, our method of building the SDG di�ers in many respects. Our method eliminates the need to compute the

GMOD and GREF sets of each procedure in the system and to construct a linkage grammar and its corresponding

subordinate characteristic graphs of the linkage grammar's nonterminals. Third, we use a parse tree as the basis
of our SDG. This allows slicing to be more precise than if resolution of the SDG was only at the statement

level. The improved precision occurs because the algorithm for slicing [6] requires the traversal of certain edges

backwards. Hence, when a statement such as x = x + y +foo(&a) is encountered during the computation of the

slice of a, then the union of the slices associated with x and y will be included in the slice of a. It is also clear

that variables x and y do not a�ect the value of a. By employing a parse-tree-based SDG, we are able to avoid

this shortcoming of statement-based SDGs and therefore arrive at more precise slices and therefore more precise

data dependence analysis (since the latter depends on the former).

Figure 3: The slice relative to the statement i=i

3.1 Control and Data Dependence

Control Dependence A 
owgraph (program graph) is a directed graph with an initial node from which all

other nodes can be reached. Nodes correspond to basic blocks and edges represent transfers of control between ba-

sic blocks. Figure 2(a) shows an example 
owgraph whose initial node has been marked by \Begin." Dependences

among blocks arise as the result of either control or data dependences.

A node y is said to be control dependent on x if there exists a directed path from x to y such that every node

z on the path (not including x or y) is post-dominated by y, and y does not post-dominate x.
In order to calculate control dependences, a control 
owgraph of a program is needed. The control 
owgraph's

post-dominators are then calculated which is equivalent to calculating the dominators of the reverse control


owgraph (all edges of control 
owgraph are reversed). We then use the algorithm discussed in [6] to compute

the control dependences.

Figure 2(b) and 2(c) show an example of the control 
owgraph and its corresponding post-dominator tree.



Figure 4: The DU-chain at statement *y=*y+*x.

Data Dependence In order to compute the data dependences of a program, we must �rst calculate the reaching

de�nitions for the entire program. We de�ne the GEN and KILL sets [2] for each block on 
owgraph. We then

use the iterative algorithm presented in [2] to calculate the reaching de�nitions. A node x is data 
ow dependent

from a node y if node y de�nes a variable that is used in em x.

We now consider the case of routine invocation. When a call-site is encountered, the 
owgraph is annotated by

introducing actual in and actual out nodes ([11]). The actual out nodes are considered as unknown (U-nodes)[11]

until the time the called procedure is solved. The assignment of the actual out nodes depends on the corresponding

formal out nodes. Speci�cally, if a formal out node is an A-node, we consider its corresponding actual out node

to be a de�nition. If it is an I-node, the actual out node is considered to be a de�nition, but its KILL set is

de�ned to be empty. Finally if the formal out node is an IN-node, then both its GEN and KILL sets are empty

by de�nition.

When we encounter a call-site, we suspend solution of the current procedure and descend into the called

procedure and calculation of the reaching de�nitions is begun there. This procedure is repeated until one procedure

calls no other procedure. At this point, all of the data 
ow dependences of the last encountered procedure can

be calculated since its GEN and KILL sets are known.

4 A Tour of Ghinsu

In this section we brie
y present the Ghinsu environment and the tools that we have implemented. Ghinsu

accepts a source program written in a subset of either ANSI C or Pascal as input and produces the SDG as

described earlier. This SDG can subsequently be used by any of the available tools.

Figure 3 presents a simple graphical user interface that we developed using X-Window library routines that

facilitates user interaction with the system. A brief description of the major components of Ghinsu as well as

the tools discussed earlier follows. It should be noted that except for YACC all components were built \from

scratch".



Figure 5: The UD-chain at statement *x=*x-1.

YACC: The parser generator YACC is used in the Ghinsu project to generate a parser that when fed an ANSI

C or Pascal source program produces a parse tree as output. This step produces the nodes and control 
ow edges

and is the skeletal structure on which the rest of the system dependence graph is built. Each terminal node is

annotated with its corresponding location in the source (a line and column number). This allows us to achieve a

mapping from the source �le to/from the SDG.

Dependency Generator: The dependency generator takes the parse tree (generated by the YACC) as its

input and produces the parse tree based system dependence graph. Figure 1 illustrates the statement2 based

SDG produced by the dependency generator for the program shown in Figure 4.

TOOLS: The tools reside here and will be discussed shortly.

Graphical Interface: After the Ghinsu tool has been invoked, the user is presented with a window (not shown)

where the �les of the given subdirectory are displayed. The subdirectory can be changed by changing the Path

�eld in this screen. The �le that contains the desired program can be selected by clicking on its �lename and

subsequently can be opened via open button. Before any of the tools are invoked the user must request that the

SDG corresponding to the �le opened should be built; this is accomplished via the build SDG button. At this

point, the user must position the cursor on the target statement (and variable) that he/she wishes to inspect;

then he/she should invoke the appropriate module (slicer, dicer, ripple analyzer, dependence analyzer, DU-chain,

etc.)3.

The mapping between the source code, the graphical display, and the SDG is straightforward. When the user

selects some variable on a statement to have some action performed on it (such as a slice), the line and column is

2We illustrate the statement based SDG as opposed to the parse tree based for the sake of simplicity.
3The Clear All button is employed to clear all highlighted text; the Quit button is used to exit from Ghinsu. Buttons

that are not discussed are used for the tool's development process. Additionally, the object finder button is not shown.



determined. The SDG is then searched for a match based on the line and column. If a match is found, the variable

is highlighted; and, its corresponding node is \remembered". If the user subsequently chooses an action, the node

remembered is used as the target node. The results of the action are re
ected on the display by traversing the

SDG and highlighting the source corresponding to the nodes that are marked (e.g., in the slice).

Slicer: This module calculates slices on a system dependence graph. The screen dump shown in Figure 3

illustrates the slice of the program relative to the statement i=i by highlighting the statements that belong to

that slice. In this context, the maintainer may use the intraprocedural slice button whenever he/she wishes to

limit his/her view to the scope of one function. Furthermore, two more buttons related to slicing are provided.

The ascend only tool allows the maintainer to limit the slice to only the function selected and the functions that

call the selected function. This operation corresponds to slicing phase one only. Correspondingly, the descend
only tool allows the maintainer to limit the slice to only the function selected and the functions called by the

selected function. This operation corresponds to slicing phase two.

DU-chain: Two more screen dumps are displayed. Both illustrate the precision as well as the identi�cation of

the position of the uses and de�nition of variables at a given statement even if procedure boundaries are crossed

and even if recursive procedures are present. In Figure 4 the statement *y=*y+*x has been selected and the DU-

chain has been requested, i.e., the determination of all uses for this de�nition of *y. Notice that *y is used in the

predicate (*y == 0); if this statement evaluates to false, it will be used in the predicate (*y==1). Furthermore,

if the latter predicate evaluates to false, then the variable will be used at the statement *y=*y-1. Finally, since

there is an execution path that passes through the statement *y=*y+*x and statement y=y, the latter statement

is captured since y is used there.

Similarly, Figure 5 illustrates the de�nitions of the variable x that can reach its use in statement *x=*x-1.

In that case what reaches this statement is either the declaration (ud-anomaly can therefore be detected) or the

statement containing the de�nition *x=*x+1 depending of course on the data.

Calls: This button invokes a tool that displays the calling sequence.In addition, the user could query the system

via either the who calls or calls who buttons. Speci�cally, the maintainer selects (via the cursor) a function such

as sample. In the former case, all functions that call the function sample will be identi�ed whereas the functions

that are invoked by the function sample will be identi�ed.

Dependency: This button invokes the data 
ow dependence analyzer. It is assumed that already a statement

has been selected as we described earlier.The output indicates the line number, variable name, type of variable

and the function in which each variable that may a�ect the value of the selected variable is visible.

Finally, the Show de�nitions selection causes all statements to be identi�ed at which a maintainer-speci�ed

variable has been de�ned.
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