
Program Slicing

Panos E. Livadas
Stephen Croll

Computer and Information Sciences Department
University of Florida

Gainesville, FL 32611

ABSTRACT

The concept of static program slicing was first introduced by Weiser. Ottenstein et al. indicated that an
intraprocedural slice can be found in linear time by traversing a suitable graph representation of the pro-
gram referred to as the program dependence graph (PDG). Horwitz et al. introduced algorithms to con-
struct interprocedural slices by extending the program dependence graph to a supergraph of the PDG
referred to as the system dependence graph (SDG). This extension captures the calling context of pro-
cedures.

In a previous paper, we demonstrated that a parse-tree-based SDG provides us with ‘‘smaller’’ and there-
fore more precise slices than a statement-based SDG. Furthermore, we described extensions to the SDG in
order to handle particular constructs in a language that is a subset of ANSI C. In this paper, we will
describe a new method for the calculation of transitive dependences and therefore build a SDG that does
require neither the calculation of the GMOD and GREF sets nor the construction of a linkage grammar and
the corresponding subordinate characteristic graphs of the linkage grammar’s nonterminals. Additionally,
we illustrate the versatility of the SDG as an internal program representation by briefly presenting a tool
that we have developed that permits slicing, dicing, and ripple analyzing in addition to other software
engineering activities to be performed on programs written in a subset of ANSI C. This report is an exten-
sion of our previous report published in December 1991.

1. Introduction

Software maintenance is an expensive, demanding, and ongoing process. Lientz and Swan-
son [Lie80] have reported that large organizations devoted 50% of their total programming effort
to the maintenance of existing systems. Boehm [Boe75] has estimated that one US Air Force sys-
tem cost $30 per instruction to develop and $4,000 per instruction to maintain over its lifetime.
These figures are perhaps exceptional; but, on the average, they seem to be between two and four
times higher than development costs for large embedded systems. We therefore aim to reduce
maintenance costs by increasing the productivity of the maintainer. This can be accomplished
with an integrated software environment that provides one with an assortment of tools.

Program slicing provides one such useful tool for the maintenance programmer. Formally,
a slice of a program P at program point p relative to a variable v that is either defined or used at p,
is defined to be the set of all statements and predicates of P that might affect v1. Program slices
could be used in a variety of ways to aid in a number of software engineering activities such as
the ones that are briefly discussed below.

1 Weiser [Wei82] gave the following definition of a slice. Let P be a program, let p be a point in P, and
let V be a subset of the variables of P. A static slice or simply a slice of P relative to the slicing criterion
<p,V> is defined as the set of all statements and predicates of P that might affect the values of variable V at
the point p. This definition is less general; but, it is all that is needed for our purpose.

- 2 -

Weiser [Wei82] has shown through his empirical studies that programmers use slices when
debugging. Assume that during testing we find that the value of a certain variable, v, is
incorrectly computed at some statement, n, of our program. By obtaining a slice of v at n, we
may extract a significantly smaller piece of code to examine that allows location of the bug more
easily. In addition, program slicing provides a meaningful way to decompose a large program
into smaller components and can therefore aid in program understanding. Moreover, Horwitz
[Hor88] has used the concepts of slicing in integrating program variants and Badger [Bad88] has
demonstrated how slicing can be used for automatic parallelization. Furthermore, slicing also
aids in code reusability. If a large program computes the value of a variable x and the code asso-
ciated with its computation is needed in another application, then one may slice on this variable
and use the extracted program in the application at hand. Furthermore, a number of metrics based
on program slicing have been proposed [Wei82] which include coverage, component overlap,
functional clustering, parallelism, and tightness.

Weiser’s slicer was based on a flow-graph representation of Simple_D programs. Otten-
stein et al [OTT84], showed that an intraprocedural slice could be found in linear time by
traversing a suitable graph representation of the program which they referred to as the program
dependence graph (PDG). Horwitz et al [Hor90], have introduced algorithms to construct inter-
procedural slices by extending the program dependence graph to a supergraph of the PDG which
is referred to as the system dependence graph (SDG). This extension also captures the calling
context of the procedures that was lacking in the method proposed by Weiser; and, it also permits
slicing to be performed even if a program contains calls to unknown procedures, provided that
transitive dependences are known.

Informally, the SDG is a labeled, directed, multigraph where each vertex represents a pro-
gram construct such as declarations, assignment statements, and control predicates. Edges
represent several kinds of dependences among the vertices which can be distinguished by the
labels attached to them. The SDG is a suitable form of internal representation which supports the
integrated maintenance environment that was discussed earlier since slicing, ripple analysis, and
dicing can be reduced to a graph reachability problem.

Realizing the versatility of this IPR, we have developed a prototype that accepts programs
written in a subset of ANSI C and which generates a SDG. We have also implemented tools such
as a slicer, a dicer, and a ripple analyzer that can utilize this SDG. In addition, we are exploring
the use of this SDG in some of the software engineering activities discussed above.

To accomplish this task, we had to ‘‘expand’’ the language described in [Hor90], modify
the SDG, and modify the algorithms presented. In particular, the SDG described in [Hor90]
models a language that consists of a single (main) program and which supports scalar variables,
assignment statements, conditional statements, and while loops. Furthermore, the language con-
sists of a collection of procedures where parameters are passed by value-result, there exist global
variables, and procedures end with return statements. These return statements can not be
arbitrarily located in the procedure nor do they actually return values to their calling procedure(s).
Additionally, recursive procedures are supported.

We extend this grammar and consequently modify the SDG as follows. First, declarations of
local, global, and local variables are supported. Second, the distinction is made between the two
methods of parameter passing: pass-by-value and pass-by-reference. The same notation is
employed as in C, so that the type of parameter passing can be determined. However, pointer
operations are restricted to those that constitute ‘‘pass-by-reference parameters’’; i.e., if x and
y are pointer variables, we permit assignments of these variables such as *x = 4, and *y = *x
(where * denotes a dereferencing of the contents of the variables); but, general pointer assign-
ments such as x = y are not allowed. Third, any number of return statements are permitted
to appear anywhere in a procedure. These return statements can contain expressions that may

- 3 -

include variables and are modeled after the return statements in the language C. Fourth, we
distinguish among functions that return values as opposed to those that do not. Fifth, additional
C constructs are ‘‘handled’’ except goto, break, and continue. Finally, a parse tree is used
as the basis of our SDG. This allows slicing to be more precise than if the "resolution" of the
SDG was only at the statement level.

The method presented in this paper for calculating dependencies for procedures (including recur-
sive procedures) eliminates the need to construct a linkage grammar and the corresponding subor-
dinate characteristic graphs of the linkage grammar’s nonterminals. As described by [Hor90], a
linkage grammar consisting of one nonterminal and one production must be constructed for each
procedure. The attributes in the linkage grammar correspond to the parameters in the procedures.
This attribute grammar is the input to an algorithm that is a slight modification of the algorithm
described in [Kas80]. Horwitz’s algorithm requires the construction of an auxiliary graph which
expresses the dependencies among the attributes of a production’s nonterminal occurrences.

Additionally, we describe our reaching definitions calculator tool that uses the SDG to show
reaching definitions. These definitions can span procedure boundaries.

Presently, we have implemented the algorithms that are presented here as part of our Ghinsu
tool. This tool accepts a source program written in a subset of ANSI C as input and produces an
internal program representation that is based on the (SDG) and which can subsequently be used
by any of our four implemented tools: slicer, dicer, ripple analyzer, and reaching definitions cal-
culator.

The definition of a static slice that will be employed in the sequence is the same as the one
given in [Hor90] which is less general than the one proposed by Weiser but which does capture
the ‘‘spirit’’ of the slice. In particular, a static slice of a program P at a program point p relative to
a variable v, that is either defined or used at p, is the set of all statements and predicates of P that
might affect v.

2. The Program Dependence Graph and the System Dependence Graph

2.1. Program Dependence Graph

The program dependence graph (PDG) for a program P, with no procedures, denoted by G P, is a
labeled, directed, multigraph.

Each node represents a program construct such as declarations, assignment statements, and
control predicates; there is also a special node called the entry node. Generally speaking an entry
node is the root of the tree that represents the ‘‘body’’ of a function.

Edges represent several kinds of dependences among the nodes which can be distinguished
by the label attached to them. Specifically, three dependences are distinguished2: control, data
flow, and declaration, each of which will be briefly discussed below. A more complete discus-
sion can be found in [Liv91]. In particular, let v 1 and v 2 be two nodes of G P.

If the execution of v 2 is determined by the predicate represented by v 1 at the time of execu-
tion, then v 2 is control dependent on v 1; and, a control dependence edge from v 1 to v 2 is defined.
In other words, control dependence exists incident from a node v 1 to a node v 2 if v 1 represents a
control predicate and v 2 represents those components of the program P immediately nested within
the loop or conditional whose predicate is represented by v 1. The above relationship is denoted
via the following notation:

2 In reality there is a further dependence edge due to the return statement. We will defer discussion of
this edge to the next section.

- 4 -

v 1 →cd
v 2

We note that every component of P that is not subordinate to any control predicate is control
dependent on the entry node. Given the grammar’s constructs3 under consideration, control
dependences reflect the program’s nesting structure. The source v 1 of a control dependence is
always either the entry vertex (in which case v 2 is not nested within any loop or conditional) or a
predicate vertex (in which case v 2 is immediately nested within the loop or conditional whose
predicate is represented by v 1) . Consider the program in Table 1. Statements [6], [7] and [8], [9]
are control dependent on [5].

If data propagate from v 1 to v 2, then we say that v 2 is data flow dependent on v 1; and, a data
dependence edge exists4. Stating the concept differently, if v 2 is data flow dependent on v 1, then
the value computed by program P will be different if the positions of statements v 1 and v 2 are
reversed. The above relationship can be denoted by using the following notation:

v 1 →dd
v 2

Dependences that exist between the declaration and the definition of variables in a program are
represented by declaration edges. Such an edge exists from a node v 1 corresponding to the
declaration of a variable to each of the nodes v 2 corresponding to that variable’s subsequent
definitions. Declaration edges can be considered to be a special kind of data flow edge. The
above relationship can be identified by using the following notation:

v 1 →de
v 2

We give one more definition: Let s 0 and w be two nodes in G P. We define an intraslice-path
from w to s 0 and denote by Sw

s0 a path on G P with initial vertex w and terminal vertex s 0 having the
property that the edges of Sw

s0 represent data, control, or declaration dependences. In symbols

∀v i ,v j ,w ,s∈G P ∋: e→i , j = (v i ,v j

_ ___
) ∈Sw

s0 → 
(v i →dd

v j) ∨ (v i →cd
v j) ∨ (v i →de

v j)



We will say that s 0 is an intraslice-path reachable from w, if and only if, there exists an intraslice
path from w to s 0.

Having defined the program dependence graph, we are now in a position to define the slice
of a program with respect to a variable in a statement for a single-procedure program such as
defined in [Ott84]. Specifically, if G P is a program dependence graph and s 0 is a node in G P, then
the slice of G P with respect to s 0, denoted by G P / s 0, is that subgraph of G P which consists of those
nodes w from which s 0 is intraslice-path reachable. Hence,

V(G P / s) =




wεV(G P) : ∃ Sw
s





Equivalently, the nodes of G P / s are those of G P that are encountered when one traverses the graph
G P starting from the node s and following all of the edges backwards.

3 The handling of a return statement requires the introduction of additional edges that are discussed in

the following section.
4 In [Hor90], a distinction is made between loop-carried and loop-independent dependence edges. This

distinction is not made here. Furthermore, another type of data dependence, the def-order dependence, is not
employed.

- 5 -

2.2. System Dependence Graph

Our discussion now moves to slicing on a program which consists of a collection of one or more
procedures and their associated parameters. To address this problem, the program dependence
graph is extended to what is called a system dependence graph (SDG)[Hor90]. An SDG for a
program P consists of a PDG that models the main program M and a collection of L procedure
dependence graphs that model the program’s K procedures F k for each non-negative integer k such
that5 0 ≤ k ≤ K = L. The extension of the PDG to SDG that captures the calling context also requires
the introduction of an additional set of nodes and an additional set of edges. Each of these sets is
discussed in turn below.

2.3. The Nodes

First, whenever a call to a function F k is encountered, a node (referred to as the call-site node,
denoted by csj

F k where j is a nonnegative integer that is employed to enumerate static calls to F k) is
created. Then a number of nodes, referred to as the actual-in nodes, denoted by a_ini , j

F k where i is
equal to the actual number of parameters of the function F k, are created. At the same time,
another set of nodes, referred to as the actual-out nodes and denoted by a_outl , j

F k where l is equal to
the number of parameters of the function F k that are passed-by-reference, are built6. It is worth
noting that the set a_outl , j

F k could be empty; moreover, for a fixed k, the cardinality of a_outl , j
F k

remains the same for each call j. By definition, all such nodes are control dependent to the call-
site node. In symbols,


∀ j ∀k ∀v∈(a_ini , j

F k ∪ a_out F k
l, j) → (csj

F k →cd
v)

Secondly, at the time that the first static call to a function F k was encountered, an additional node,
called the entry node and denoted by en F k , was created. Moreover, a number of additional nodes,
referred to as the formal-in nodes (f _ini

F k) and equal to the number of formal parameters are
created. To complete the scenario, a number of nodes, referred to as the formal-out nodes (f _outl

F k)
and equal to the number of parameters that are passed-by-reference, are built. It is worth noting
that for all j and fixed k, the set a_ini , j

F k is isomorphic to f _ini
F k , whereas the set a_outl , j

F k is isomorphic
to f _outl

F k . Finally, by definition all such nodes are control dependent on the entry node. In sym-
bols:


∀ j ∀k ∀v∈(f _ini

F k ∪ f _outl
F k

) → (en F k →cd
v)

2.4. The Edges

At this point, we present additional types of edges that will enable us to build the system depen-
dence graph.

By definition, for each k and each j, the vertex en F k is adjacent to csj
F k . Each such edge that is

incident from a call-site node and incident to an entry node is referred to as a call edge. Notice
that the indegree(en F k

) = j k where j k is the number of call-sites corresponding to the function F k.
Hence, for each k

∀ j (csj
F k →ce

en F k

)

5 We will see shortly that in the presence of aliasing K ≤ L.
6 Note that in [Hor90], the number of actual-out nodes is equal to the number of actual-in parameters to

facilitate the calling mechanism.

- 6 -

A parameter-in edge is an edge from an actual-in node to its corresponding formal-in node.
Similarly, a parameter-out edge is an edge from a formal-out node to its corresponding actual-out
node. In symbols we have,

∀ j





∀i a_ini , j

F k →pi
f _ini

F k 
 ∧ 

∀l f _outl
F k →po

a_outl , j
F k 






The system dependence graph must represent direct dependences between a call-site and the
called procedure and the transitive dependences due to procedure calls. In this case, a transitive
dependence edge exists from an actual-in node to an actual-out node if the formal-out node
corresponding to the latter node is intraslice-path reachable from the formal-in node correspond-
ing to the former node. Notice that this is equivalent to saying that the intraprocedural slice of the
procedure dependence graph at the formal-out node contains the formal-in node. In other words,
for each fixed k

(∃ i ∃ l ∋: a_ini , j
F k →td

a_outl , j
F k

) ← → 
(∃ i ∃ l ∋: f _ini

F k →td
f _outl

F k

) ← → (f _ini
F k

∈V(G F k / f _outl
F k

))

where by G F k we denote the procedure dependence graph of the function F k. The collection of
these transitive dependence edges at each call-site Fj

k is defined as the procedure’s summary infor-
mation ([Hor90] and denoted byσFj

k

. Hence,

σFj
k

=
i = 1
∪

i k 


e→i ,l = (a_ini , j

F k

,a_outl , j
F k

_ ____________
) : ∃ i ∃ l ∋: (f _ini

F k →td
f _outl

F k

)




Now, we will define three new types of edges that have been designed so that they permit us
to ‘‘properly’’ handle functions that do return values (as opposed to those that do not) as well as
handling C-like return statements. Properly, in the sense that when the slicing algorithm is
eventually applied, the contributed slice will be as ‘‘minimal’’ as possible.

C functions may or may not return a value to the call-site. In the former case, the returned
value may be data dependent on one or more of the actual parameters. If that is the case, then
these parameters should be included in the slice. Therefore, we define a new edge, the affect-
param edge, that indicates this parameter-returned value dependence. Such an edge, if it exists, is
by definition incident from the actual-in node corresponding to the actual parameter that
influences the returned value and incident to the function’s call-site node. In symbols,

∀i ∋: the value returned by F k is data dependent on a_ini
F k

→ 
a_ini

F k →ap
csj

F k

∀ j

As we indicated in [Liv91] two new types of edges, an intraprocedural edge the return-
control edge and an interprocedural edge the return-link edge are needed to properly handle the
return statements.

The return-control edge indicates the dependence between the return statement of a procedure
and other statements following the return statement which will not be executed when the program
exits on a return statement. In other words, a return-control dependence exists between a return
node v rn and another node of v s of G F k , if and only if, execution of the return statement correspond-
ing to the former node excludes execution of the statement corresponding to the latter node. The
above relationship can be defined as follows:


∀v s ,v rn ∈G F k → (v rn →rc

v s) ← → (v s →cd
v rn)

A return-link edge connects a return node to the corresponding function call-site. Specifically,

∀v rn ∈G F k ∀ j (v rn →rl
csj

F k

)

- 7 -

Given now that our grammar allows call-by-reference parameters, return statements, as
well as functions that may return values, we can define as the summary information, σ

_Fj
k

, at a call-
site csj

F k to be the union of three types of dependences: transitive dependences, affect-param
dependences, and return-link dependences. Therefore,

σ
_Fj

k

= σFj
k

∪





i = 1
∪

i k 


e→i , j = (a_ini , j

F k

,csj
F k

_ _________
) : ∃ i ∋: (a_ini , j

F k →ap
csj

F k

)









∪





rn
∪




e→rn , j = (v rn ,csj

F k
_ ______

) : ∃rn ∋: (v rn ∈G F k) ∧(v rn →rl
csj

F k

)









Figure 1 presents the system dependence graph of the program that is shown in Table 1. Declara-
tion edges are not shown.7

At this time, we should note that the nodes of the SDG (in the figures) are shown ‘‘resolved’’ at
the statement level. In actuality, the SDG is ‘‘resolved’’ at the token level. Using a parse tree
representation as the basis for our SDG allows more precise slices to be calculated. This is
further detailed in Section 5. In the sequel, by the term SDG we will denote a parse-tree-based
SDG unless otherwise noted. For the purposes of simplicity, the figures in this paper are shown
resolved at the statement level.

void main() int CalcSum(int s) void Inc(int *x)
{ { {

int sum; Inc(&s); *x = *x + 1;
int i; s = s + 9; }
i = 0; return s;
while (i < 10) { }

i = i + 1;
sum = CalcSum(sum);

}
i = i;
sum = sum;

}

Table 1. A sample program.

The edges representing the dependences of this set permit one to descend into a procedure during
slicing and calculate the statements of the function that should be included in the slice. Since the
effects of the parameters and of the return statements have been ‘‘summarized’’, it is necessary to
descend into the procedure only once to calculate dependences. As additional function call-sites
are encountered, the procedure’s summary can be reflected onto the appropriate nodes in the
graph. An additional benefit is that there is no requirement that the contents of a procedure be
known in order to perform slicing; we only need to know its effects.

As we indicated earlier, determination of the transitive dependences of a procedure F k is accom-
plished by determining for each f _outl

F k all formal-in nodes f _inl
F k from which the former node is

intraslice-path reachable. But, the structure of the procedure dependence graph G F k is different
from the one presented in Section 2 because it may contain a number of call-site nodes csj k

F m k

together with their associated summary information where j k is the number of static calls that are
made from F k to functions F mk , respectively. Hence, the definition of an intraslice-path Sw

s0 given
in Section 2 is extended to a path that is denoted by S

_
w
s0 so that it is also including edges that

represent the transitive dependences and affect-param edges associated with the call-sites of csj k

F m k

7 In order to keep the graph from becoming ‘‘busier’’ than it already is.

- 8 -

Return-Link Transitive
Parameter-Out
Parameter-In

Return-Control
Affect-Param

Call
Flow
Control

CalcSum()
sum =

int sum sum = sumi = i

i = i + 1

while (i<10)i = 0int i

void main()

Actual-In

Call-Site

Entry

* x
Formal-Out

Formal-In

Entry

Call-Site

Actual-In Actual-Out

int CalcSum()

int s Inc()
s = s + 9 return s

&s &s

Entry

Formal-In

void Inc()

int *x
*x = *x + 1

sum

Figure 1. The program dependence graph corresponding to the program in Table 1.

as well as the return-control edges. Hence,

∀v i ,v j ,w ,s 0 ∈G F k ∋: e→i , j = (v i ,v j

_ ___
) ∈S

_
w
s0 → 

e→i , j ∈S
_

w
s0 ∨ (v i →ap

v j) ∨ (v i →rc
v j)




We will say that s 0 is intraslice-path reachable from w, if and only if, there exists an intraslice-path
from w to s 0. Hence, an intraprocedural slice is defined via

V(G F k / s 0) =




wεV(G F k) : ∃ S
_

w
s0





The algorithm that performs this task is similar to the one described in the previous section with
the additional requirement that the affect-param, and return-control edges also be traversed
‘‘backwards’’.

2.5. Global Variables, Static Variables, and Aliasing

2.5.1. Global Variables

Source programs which contain global or static variables, or in which aliasing is present, need to
be transformed before they can be represented by a SDG. The following sections describe these
conversions.

The handling of global variables is based on the method suggested by [Hor90]. Specifically, glo-
bals are solved by introducing them as additional pass-by-reference parameters to the procedures
that use or define them. All procedures that call a procedure directly or a procedure which
indirectly uses or defines global variables are modified to include the global variables as pass-by-
reference parameters. The call-sites are also modified to include the new parameters.

- 9 -

This however is an incomplete solution. Because of possible naming conflicts, the global vari-
ables may need to be renamed. Consider the program in Table 2. In procedure Inc, there is a
naming conflict. Although Inc does not directly use the global variable g, Inc calls function
IncGlobal which does. Adding an additional parameter g to procedure Inc would create an
obvious naming conflict. Naming conflicts can arise when a formal parameter or a local variable
share the same name with a global variable.

int g;

void main(void) int Inc(int g) void IncGlobal(void)
{ { {

int i = 4; IncGlobal(); g = g + 1;
i = Inc(i); return g+1; }

} }

Table 2. Illustration of global naming conflicts.

The solution is to rename the global variables to avoid this conflict. A simple approach to choos-
ing unique names would be to simply append an "illegal" character to the end of a global variable.
For example, the global variable g can be renamed g+. Note that this renaming can be done on
the SDG; the source program need not be altered.

2.5.2. Static Variables

Static variables in C are essentially global variables with limited visibility. These variables exist
across invocations of the procedure in which they are declared. They can be handled in the same
manner as "regular" global variables except special attention must be paid to avoid naming
conflicts; there may be several static variables with the same name among modules, procedures,
or even within the same procedure. As in the renaming of global variables, a simple approach to
choosing unique names would be to append an "illegal" character to the end of the static variable.
Additionally, the name of the procedure in which it is declared is also appended. This will
remove naming conflicts between procedures. To avoid naming conflicts within the same pro-
cedure, the scoping level of the static variable is also appended. For example, the static variable
s in the procedure Add, that is declared in the first scope of the procedure, would be renamed
s+Add1.

2.5.3. Aliasing

Our previous discussions have not included the problem of aliasing. The reason is that when
aliasing phenomena occur during a call to a procedure, they are then resolved (during the SDG
construction) via a transformation to an alias free procedure. We first note that when a global
variable g is encountered in the body of a function alias that is invoked via the call8

alias(& x 1 ,& x 2 , ... ,& x m) and function’s header alias(* y 1 ,* y 2 , ... ,* y m) then internally it is
assumed that the call was alias(& x 1 ,& x 2 , ... ,& x m ,& g +) and the function’s header was
alias(* y 1 ,* y 2 , ... ,* y m ,* g +); actual as well as formal nodes are adjusted accordingly. Hence,
from that point on we may assume the existence of neither global nor static variables and that
each function call is of the form alias(& x 1 ,& x 2 , ... ,& x n) and the function’s header
alias(* y 1 ,* y 2 , ... ,* y n). Now given our grammar aliasing can occur, if and only if, a call of the
form alias(& x 1 ,& x 2 , ... ,& x n) is made with x i = x j where i≠ j and 1 ≤ i , j ≤ n. In that case * y i and * y j

are aliases.

8 The types of the formal parameters are omitted.

- 10 -

The transformation to an alias-free procedure dependence graph is simple. When a procedure
must be solved, a tag is attached to it. A tag of a procedure with n parameters is a mapping from

i = 1
X
n

{i} to N n that indicates the aliasing pattern for that particular call. The mapping is straight for-

ward; if y i 1
,y i 2

, . . . , ,y i k
are aliases, the positions i 1 ≤i 2 ≤... ≤i k of the image vector are set to the same

value i 1. For example, if no aliasing is present, the mapping is the identity on
i = 1
X
n

{i}; whereas if y 2

and y 4 are aliases, the mapping is given by

tag(1 , 2 , 3 , 4 , 5 ,.... ,n − 1 ,n) = (1 , 2 , 3 , 2 , 5 ,... ,n − 1 ,n)

which indicates that the second and fourth parameters are aliases. When aliasing is detected at the
call-site to a function F k, the call-site is tagged; a new entry node is created and tagged as
described9; the (alias-free) abstract syntax tree representing alias is copied so it is rooted at this
new entry node; and, data dependence analysis is performed by ‘‘identifying’’ the sets of vari-
ables that are aliased. We note here that the possible number of alias configurations for a pro-
cedure with n passed-by-reference parameters is 2n − n.

3. The Interprocedural Slicing Algorithm

The interprocedural slicing algorithm is based on the algorithm suggested in [Hor90].
Modifications are necessary given the additional constructs introduced in the grammar. The algo-
rithm finds the slice relative to a node s 0 of a program G P in two phases. During the first phase, a
set of nodes U 1 of G P is captured with the property that u∈U 1, if and only if, s 0 is phase 1 reach-
able from w. Phase 1 reachability is equivalent to the property that there is a path from u to v con-
sisting of any of the following types of edges: control dependence, data dependence, declaration
dependence, return-control, parameter-in, transitive dependence, affect-param, and/or call. In the
second phase, we capture an additional set of nodes U 2 of G P with the property that w∈U 2, if and
only if, there exists a node u∈U 1 such that u is Phase 2 reachable from w. Phase 2 reachability is
equivalent to the property that there is a path from w to u consisting of any of the following types
of edges: control dependence, data dependence, declaration dependence, return-control,
parameter-out, transitive dependence, affect-param, and/or return-link edges. Finally, the vertices
of the interprocedural slice are defined as the union of the nodes visited in both phases. In sym-
bols

V(G P / s 0) = U 1 ∪ U 2

In general, at each phase all indicated edges are followed recursively backwards as they were
when intraprocedural slicing was performed.

Finally, the slicing algorithm is modified to handle the return-control edges. This
modification is based on the observation that the slicer must recognize when a return-control edge
is being traversed. The node at the end of the return-control edge (a return statement) is marked
as being in the slice. The slicer now ‘‘short circuits’’ to the control predicate of the return state-
ment and slicing continues as normal.

We should note that when a call to a procedure F yields aliasing and a slice at a statement s 0

that is internal to the body of procedure F, special care must be taken. Assuming that the total
number of aliasing patterns is m > 0, let s0

m represent the instance of s 0 in each procedure depen-
dence graph associated with F. Then the slice is given by

i = 1
∪

m 



slice at s0
m





9 In our implementation both call-site and entry nodes are identified via F k . tag.

- 11 -

4. Enhancing Slicing Accuracy

There are a number of instances in which an actual-out node should not exist as when a passed-
by-reference parameter is not modified. In this case, the presence of its actual-out node could
adversely affect the precision of an interprocedural slice. A method is described in [Hor90] to
detect such a phenomena that is based on the calculation of the GMOD and GREF sets (via the
method proposed in [Ban79]) for each procedure F k. We have determined that calculating these
sets is not necessary under our method since all information required for that determination is
contained in the procedure’s dependence graph. Furthermore, as we will show in the next section,
we are deriving this information during construction of the SDG.

In particular, we consider three cases for a pass-by-reference variable. The first case is
where the variable is passed to the procedure and is never modified. The second is where the
variable is passed and may sometimes be modified. And, in the third case, the variable is passed
and is always modified. For the purposes of slicing, the second and third cases can be combined.
However, by differentiating between the second and third case, we are able to use that informa-
tion for other related applications such as calculating reaching definitions.

To illustrate how the never, sometimes, and always cases affect the architecture of the SDG,
consider the subgraph of SDG in Figure 2. If the variable v of procedure Func() is classified
as never modified, the actual-out node is not considered a definition of variable v. Therefore
only flow edge #1 exists. If the variable is classified as always modified, the actual-out node is
considered a definition of variable v. In this case, the definition kills all the reaching definitions
of variable v. Correspondingly, the SDG will contain only flow edge #2. In the final case where
the variable is classified as sometimes modified, the actual-out node is also considered a definition
of variable v. However, this definition does not kill the reaching definitions of v. Therefore
both flow edge #1 and flow edge #2 exist.

2

1

a = v

&v&v

v = v + 1
Func()

Call-Site

Actual-In Actual-Out

Figure 2. Subgraph of SDG.

Once a procedure has been summarized (solved), we can examine the indegree of the
formal-out (relative to the flow edges) node, f _outl

F k , to determine whether a pass-by-reference
variable i corresponding to that node is always, sometimes, or never modified by the procedure.
Consider Figures 3 through 5 which illustrate a partial procedure dependence graph and where
only the flow edges are shown for the formal-out node corresponding to pass-by-reference vari-
able *i. A variable is never modified as in Figure 3 since there is only one flow edge incident to
f _outl

F k ; and, it is also incident from the formal-in node f _ini l

F k which suggests that there is no inter-
vening definition of i.

Figure 4 illustrates the case where the variable i is sometimes modified depending on whether or
not the if condition evaluates to true. In this case there exists more than one flow edge incident
to the formal-out node; and, one of these edges connects the formal-out node with its formal-in
node.

- 12 -

Formal-In Formal-Out

Entry

int *i
Formal-In

int *x
Formal-Outif (*i < 10)

*i *x

*x = *i + 2

Figure 3. The formal-out parameter *i is never modified.

Entry

Formal-In Formal-Out
int *i *i

if (*i < 4)

*i = *i + 1 return*i = *i + 1

if (*i < 4)
*iint *i

Formal-OutFormal-In

Entry

Figure 4. The formal-out parameter *i is sometimes modified.

Notice that in the last case (Figure 5), the variable is always modified since the absence of the
flow edge connecting the formal-out node to its formal-in node suggests that every possible exe-
cution path contains a definition of i.

*iint *i
Formal-OutFormal-In

Entry

*i = *i + 1Formal-OutFormal-In

Entry

int *i *i
*i = 4

Figure 5. The formal-out parameter *i is always modified.

We can summarize as follows: Let A, S, and N denote the set of formal-out nodes of F k that are
always, sometimes, and never modified, respectively. Then a node f _outl

F k is classified as follows:

1. (f _outl
F k

∈A) ← → (∀i ¬ (f _ini
F k →dd

f _outl
F k

)) ,

2. (f _outl
F k

∈S) ← → ((f _ini l

F k →dd
f _outl

F k

) ∧ (indegree dd (f _ini
F k

) > 1)) ,

3. (f _outl
F k

∈N) ← → ((f _ini l

F k →dd
f _outl

F k

) ∧ (indegree dd (f _ini
F k

) = 1)).

where indegree dd (v) denotes the indegree of the node v relative to the data dependence edges.

Additionally, a fourth case exists where the indegree of the formal-out node (relative to the data
dependence edges) is equal to zero. This case is referred to as the unknown case. Initially, all
actual-out nodes are classified as unknown.

- 13 -

5. Slicing Inaccuracies Due to System Dependency Graph Representation

As described in [Liv91], instead of the nodes of the SDG being ‘‘resolved’’ at the statement level,
we map this SDG into a parse tree so that it ‘‘resolves’’ at the token level. The marked nodes of
the SDG are then interpreted to calculate the correct slice. This method yields smaller and there-
fore more precise slices than those contributed by the statement level SDG.

Consider the code fragment presented in Table 3(i) and its corresponding partial system
dependence graph illustrated in Figure 6.

[1]. i = 0; [1]. i = 0;
[2]. sum = 0;
[3]. sum = sum + Alpha(&i); [3]. Alpha(&i);
[4]. a = i; [4]. a = i;
[5]. b = sum;

(i) (ii)

Table 3. The code fragment of a program (i) and its slice (ii) at statement [4].

The function of the procedure Alpha (whose code is not shown) is to increment the pass-by-
reference parameter and to return the new value of the parameter (as the return value of the pro-
cedure).

Alpha()

Entry

sum=sum+

Actual-OutActual-In

b = suma = i

&i&i

sum = 0i = 0

Figure 6. The partial system dependence graph corresponding to the code fragment of Table 3(i).

If we slice this program via the algorithm presented earlier on the statement-based system depen-
dence graph of Figure 6 at the statement a = i, we will obtain the set of statements {[1], [2] ,
[3], [4]}. Clearly, the variable a at line [4] does not depend on the variable sum in any way.
Nevertheless, the entire statement [3] will be captured. Consequently, all other statements of the
program that belong in the slice of statement [3] (relative to variable sum) will unnecessarily be
included in the slice of a10! Notice that this inaccuracy would have been propagated further
upwards if statement [2] was of the form sum=u+v;. This shortcoming is a direct result of the
fact that when the node corresponding to statement [3] is encountered during slicing, all flow
edges are followed backwards.

We can avoid this inaccuracy and consequently obtain more precise (‘‘smaller’’ slices) by
modifying the system dependence graph. So far, the nodes of the SDG are ‘‘resolved’’ at the
statement level. We map this SDG into a parse tree so that it does ‘‘resolve’’ at the token level;
and, we modify accordingly the slicing algorithm in such a way so that it operates on the parse-
tree-based SDG and calculates more precise slices. Consider the parse-tree-based SDG of the Fig-
ure 7 counterpart of the statement-based SDG of Figure 6 which corresponds to the code fragment

10 Notwithstanding the fact that all reaching definitions of the variable sum are killed at statement [2] of
this example.

- 14 -

of Table 3(i).

Alpha()

Entry

sumba

sum

sumsum 00 +

&i&i

=====

ii

Call-Site

Actual-OutActual-In

Figure 7. The parse-tree-based SDG.

Instead of slicing at statement a = i, we now slice at the assignment of a at that statement.
The shaded nodes show the effect of slicing at the node containing the variable a. The marked
nodes of the SDG are then interpreted to calculate the correct slice. Specifically, if the node con-
taining the assignment variable is marked, then the entire statement is captured as being in the
slice (except stripped parameters). Otherwise, only the marked call-sites are considered as being
in the slice. Notice that no node of this new SDG corresponding to the variable sum has been
marked; therefore, the slice so obtained is more precise than the slices supplied by any other
method11.

6. Building the System Dependence Graph

Let F k be a procedure of a program P. We will say that F k is solved, if and only if, all data depen-
dences and control dependences have been computed. We will say that the procedure has been
summarized, if and only if, all summary dependences have been calculated. On the other hand,
determination of the summary information of F k requires that the procedure be solved. The
method that is proposed in [Hor90] for the calculation of the transitive dependences distinguishes
between grammars that do not support recursion and those that do. In the former case, the solu-
tion proposed is via the use of a separate copy of a procedure dependence graph for each call-site.
In the latter case, the solution requires the construction of an attribute grammar and the calcula-
tion of the corresponding subordinate characteristic graphs of the linkage grammar’s nonterminals
to determine the transitive dependences. Furthermore, in either case the GMOD and GREF sets
must be calculated before solution of the dependences is initiated.

In this section we will describe a method that permits one to solve all procedures including
the construction of the SDG in a bottom-up fashion and so that only one copy of a procedure
dependence graph is required for all sites12. Hence, the advantages our algorithm are that it is
conceptually simpler; there is no need to build an attribute grammar or calculate the correspond-
ing subordinate graphs for the determination of the transitive dependences; actual-out nodes that
are deemed N-nodes are identified as such during the SDG construction and dependence

11 We should note that the mapping from the source file to our parse-tree-based SDG described in Section
10 permits us to display the entire statement [3] to the user as a member of the slice.

12 Notwithstanding the fact that in the case of aliasing phenomena each aliasing pattern gives rise to a dis-
tinct procedure dependence graph.

- 15 -

calculation that makes calculation of the GMOD and GREF sets of all procedures unnecessary.
Finally, to repeat, the algorithm operates on a parse-tree-based SDG that yields smaller slices.

The Algorithm

Our method is an extension of the method that we discussed in [Liv92] which handled the
case where no recursive procedures were present. Specifically, we noted that with the use of our
algorithm, each procedure is solved as soon as it is encountered. In other words, our method does
not need to ‘‘know’’ whether a procedure F k is terminal (i.e., does not contain static calls to any
procedure) or not. If F k is terminal, then it can be solved with no interruptions. If it is not, then
upon encountering a call to a procedure F l, calculation of the dependences of procedure F k is
suspended; the partial solution of F k (denoted by ∂ σF k) obtained up to this point is preserved;
and, dependence calculation is initiated at the called procedure F l. This process is continued until
a procedure F τ is encountered that is either terminal or has already been solved. In the former
case, the terminal procedure is solved. At any rate, F τ’s summary information σF τ is ‘‘reflected’’
back onto its corresponding calling site in the form of edges and we write ρ σF τ to indicate this
operation of reflection. Calculation of the dependences of the calling procedure is then resumed.
It should be noted that once a procedure has been summarized, there is no reason to descend into
the procedure again; subsequent calls to a summarized procedure need only have the summary
information edges reflected (i.e., copied) to the call-site.

The method just previously discussed will be illustrated by considering a program abstrac-
tion consisting of four procedures M, A, B, and C with calls as indicated in Table 4. For example,
the procedure M calls procedures A and C; procedure A calls procedure B; procedure B calls pro-
cedure C; whereas C is a terminal procedure.

M → A C
A → B
B → C
C → ∧

Table 4. Program Abstraction.

We begin by descending13 into the main procedure (procedure M). The first procedure encoun-
tered is procedure A; the partial solution of M ∂ σM is saved. Since procedure A has not been
solved, we descend into it and begin its solution. During this process the call to procedure B is
encountered; a partial solution of B is retained and we descend into the unsolved procedure B.
Again, procedure B is not terminal and its partial solution is saved before we descend into pro-
cedure C. But, C is terminal, and therefore its solution σC can be obtained. The steps outlined so
far can be encapsulated in equation (6.a)

∂ σM → ∂ σA → ∂ σB → σC (6.a)

The summary of C is reflected onto its call site (in B); and, the partial solution of B is updated to
∂2 σB = ∂ σB ∪ ρ σC and (6.a) becomes

∂ σM → ∂ σA → ∂2 σB (6.b)

Similarly, B can now be solved (since it contains no more static calls); its summary is reflected
back to its caller and (6.b) becomes

∂ σM → ∂2 σA (6.c)

FCA now can be solved and by letting ∂2 σM = ∂ σM ∪ ρ σA (6.c) becomes

13 By descend, we mean to begin processing the procedure at the entry node.

- 16 -

∂2 σM (6.d)

Solution of M is resumed until the call to C is encountered. But C has been solved; therefore its
summary is reflected and we obtain

∂3 σM = ∂2 σM ∪ ρ σC

Now M can be solved since it contains no additional calls; σM is obtained as was desired. We
should note that (in absence of recursion), we keep track of the call sites within the partially
solved procedures via a singly linked list that we refer to as the call sequence graph (CSG). The
CSG is a dynamic structure where a procedure is pushed whenever it is invoked and popped when
ever it is solved. Naturally its summary information is reflected to the call site of the procedure
that is represented by the top of the CSG. For example, Figure 8 represents the CSG at the point
which corresponds to equation (6.a). Whenever solution of procedure C is completed, the CSG is
popped and C’s summary information is reflected in the appropriate call-site in procedure B (the
new top of the stack). The process is repeated until the CSG becomes empty and the SDG has
thereby been built.

CBAM

Figure 8. Call Sequence Graph.

The algorithm just described does not work well when recursive procedures are present.
The reason is that in the absence of recursion, it is guaranteed that a terminal procedure will be
encountered that can be completely solved, and its summary information can be reflected to its
caller. In the case of recursion even if we process a procedure in its entirety, the summary infor-
mation that will be obtained may be incomplete; therefore a number of dependences may not be
found. To counter this problem, the algorithm described above is modified as follows.

The extended call sequence graph (ECSG) is employed to detect (on the fly) when a recur-
sive procedure has been encountered and to also keep track of the set of procedures (as in the case
of mutual recursion) that must be iterated over. An ECSG, Ω, is a dynamic multilist based on the
CSG of the form Ω = {ω i , j : 0 ≤ i ≤ n j , 0 ≤ j ≤ m} just previously discussed. The backbone of Ω is
nothing more than the CSG itself defined by {ω 0 , j : 0 ≤ j ≤ m}. Associated with each node in the
backbone, ω 0 , l, there is a list of procedures {ω k,l : 1 ≤ k ≤ n l} referred to as the iterate list rooted at
h=ω 0 , l. By definition, if an iterate list is not empty, then no procedure in the list appears in that
list more than once; and, as we will see, these are the procedures over which iteration must take
place. As an example, in Figure 9 one can see three possible ECSG’s; the backbone in each case
is the ‘‘horizontal’’ list (consisting of procedures M, A, B, and C). Furthermore, in (i), all iterate
lists are empty; whereas in (ii) and (iii), there is a non-empty iterate list with root nodes C and A,
respectively.

The insert operation on the ECSG differs from that of the CSG. Specifically, whenever a
call to an unsolved procedure U is encountered during the solution of a procedure V, a search in
‘‘column-major’’ order is performed on the ECSG, Ω, starting from ω 0 , 0 to determine if a node
ω i k , j l

labeled with that procedure’s name (U) is encountered in Ω.

If no such node is found, the new procedure is inserted at the tail of the backbone; the iterate
list of this procedure is set to empty; and, calculation will proceed as normal by preserving ∂ σV

and descending into U.

- 17 -

(i)

(iii)

(ii)

M A B C

A

B

C

CBAM

C

CBAM

Figure 9. Extended Call Sequence Graph.

On the other hand, if such a node is found, then recursion has been detected14. In that case,
we modify the ECSG as follows. First, the iterate list, rooted at h=ω 0 , j l

is expanded by copying
its root into it as well as all the procedures that correspond to the nodes of Ω satisfying
{ω i , j : 0 = < i ≤ n j , j l < j ≤ m}. Second, all iterate lists, {ω l , j : 1 ≤ i ≤ n j} with j > j l are deleted. Further-
more, the fact that the procedure U was found in ECSG suggests that either we have only partially
descended into it or have completed a first pass through it; therefore, instead of descending15 into
procedure U, we reflect the partial summary of U into the corresponding call site in V and resume
solution of V. One example, assuming the use of ECSG in Figure 9(ii), a call from C to procedure
A would yield the ECSG of Figure 9(ii).

Finally, a procedure V is deleted from the backbone, if and only if, the entire procedure has
been processed. At the same time an intra-slice is performed and the summary16 information that
is obtained is reflected to its (known) call sites. Moreover, if the iterate list rooted at V is not
empty, then this is a signal that iteration should be performed over the procedures in the iterate
list.

Initially, the summary information calculated for a procedure in the iterate list is incom-
plete. We term this incomplete information a partial summary. The main concept of the iteration
algorithm is that as the algorithm iterates over each procedure in the iterate list, this partial infor-
mation is reflected onto the call-sites, which in turn, is used in the calculation of subsequent par-
tial summaries. Eventually, when no new dependencies are found, this partial summary becomes
a complete summary.

An iteration over a procedure is defined as follows. We descend into the procedure and calculate
the dependencies as normal, except that as call-sites are encountered, only the (possibly partial)
summary information is reflected onto the call-site; no descents are made from the procedure.
When the procedure has been processed, the summary information is calculated and reflected to
all known (encountered) call-sites of the procedure. It should be noted here that the correct calcu-
lation of dependencies requires that when partial dependencies (in which the effects of actual-out
variables are unknown are involved), the reaching definitions for those actual-out variables are
killed. Of course, the classification of the actual-out nodes will change as the partial summary
becomes more complete.

14 Although recursion has been detected, the extent (the procedures involved in the recursion) has not yet
been determined. As the extent of recursion is determined, the root may change.

15 Additional descents will be made at the time of iteration.
16 It is important to note that if the procedure deleted is not a terminal procedure, its summary will be par-

tial (i.e., incomplete).

- 18 -

This iteration is performed over the set of procedures contained within the iterate list until no
changes to the calculated dependencies of the set are found. At this point, the procedures in the
iterate list are solved.

As an example consider the call sequence in Table 5.

M → A B
A → B D
B → C E
C → C A
D → ∧
E → F
F → ∧

Table 5. Program Abstraction.

We begin by descending into the main procedure (procedure M). The first procedure encountered
is the unsolved procedure A which does not exist in the backbone; hence, ∂ σM is saved, we insert
A into the backbone, and descend into it. When a call to the unsolved procedure B is encountered,
the backbone is searched; but, the procedure is not found. So B is inserted there, the partial solu-
tion ∂ σA is preserved, and we descend into B. Similarly, when we encounter the call to the
unsolved procedure C, we suspend solution of B, save ∂ σB, insert C into the backbone, and des-
cend into it. Figure 9(i) illustrates the status of the ECSG (merely the backbone) up to this point
whereas equation (6.e) indicates the solution steps so far.

∂ σM → ∂ σA → ∂ σB → ∂ σC (6.e)

During the solution of C a call to C is encountered; C exists in the backbone so we reflect the par-
tial summary to the call-site (in this case the partial summary is empty) ∂2 σC = ∂ σC ∪ ρ ∂ ΣC, then
the set of nodes of the ECSG from C to the end of the list are copied and appended as an iterate
list at C (Figure 9(ii). Processing of C is continued until the call to procedure A is encountered.
A search of the ECSG reveals that A exists; hence, the partial summary ∂ ΣA (in this case the par-
tial summary is also empty) is reflected to its call-site in C, i.e, ∂3 σC = ∂2 σC ∪ ρ ∂ ΣA; and, the
iterate list rooted at A is updated (Figure 9 (iii)). Since we did not descend, processing of C con-
tinues until its end is encountered in which case it is marked as having been visited17, its (partial)
summary information (ρ ∂2 ΣC) is calculated; and, this summary information is reflected to the call
site in B. This yields ∂2 σB = ∂ σB ∪ ρ ∂2 ΣC. C is then deleted from the backbone and processing
returns to procedure B as indicated by the tail of the backbone (Figure 10(i)). B now calls E
which in turn calls F as indicated by Figure 10(ii).

In symbols (6.e) has yielded (6.f)

∂ σM → ∂ σA → ∂2 σB → ∂ σE → σF (6.f)

Now F, being terminal and solved, can be reflected, (i.e., ∂2 σE = ∂ σE ∪ ρ ΣF); and, now E can be
solved. Its summary is reflected via ∂3 σB = ∂2 σB ∪ ρ ΣE.

The partial summary ∂ ΣB is calculated and reflected into A; in symbols, ∂2 σA = ∂ σA ∪ ρ ∂ ΣB.
Notice that as a consequence of the previous steps, equation (6.g) has become

∂ σM → ∂2 σA (6.g)

17 If recursion is not present, marking the procedure denotes the procedure as solved. A marked pro-
cedure will not be descended into, only its summary information need be reflected. In the case of recursion,
marking the function only denotes that the procedure has, at best, a partial solution. However, the mark
prevents the procedure from being descended into until the iteration stage.

- 19 -

(iii)(ii)(i)

C

B

A

BAM M A B

A

B

C

E F

C

B

A

AM

Figure 10. Extended Call Sequence Graph.

Figure 10(iii) shows the state of the graph up to this point.

Now, during processing of A, a call to D is encountered. The solution of A is suspended and
we descend into D (Figure 11(i)).

(ii)(i)

M A

A

B

C

D

C

B

A

AM

Figure 11. Extended Call Sequence Graph.

But, D being terminal is solved; its node is deleted from the backbone (Figure 11(ii)); and, its
summary is calculated and reflected to its corresponding call site in A via ∂3 σA = ∂2 σA ∪ ρ ΣD.
Processing resumes with procedure A. When the end of A is encountered, it is marked as visited.
When the end of A is reached, A is deleted from the backbone. But since the iterate list rooted at
A was not empty, iteration over the union of the procedures of that iterate list is necessary; in
symbols, ι(A ∪ B ∪ C). Notice that when the iteration has been completed, the complete summary
of all procedures in the iterate list will have been obtained. In other words,

ι(A ∪ B ∪ C) → σA ∪ σB ∪ σC

Once the recursion is solved, we return to finish procedure M. After calling A, M calls procedure
B. However, since procedure B has already been solved, we are finished.

∂2 σM ←ρ ΣA

∂3 σM ←ρ ΣB

→ σM

Where ι is defined as an iteration on a set of procedures (σ, ∂ σ, and ρ are defined in the previous
example).

- 20 -

An Example

We will now give an example of how we build our System Dependence Graph. Consider
the recursive program in Table 6.

[1]. void main() [10]. void R(int *x, int *y)
[2]. { [11]. {
[3]. int x,y; [12]. if (*y == 0)
[4]. [13]. *x = *x + 1;
[5]. R(&x,&y); [14]. else if (*y == 1) {
[6]. [15]. *y = *y + *x;
[7]. x = x; [16]. R(x,y);
[8]. y = y; [17]. *x = *x + 1;
[9]. } [18]. }

[19]. else {
[20]. *x = *x - 1;
[21]. *y = *y - 1;
[22]. R(x,y);
[23]. }
[24]. }

Table 6. A sample program.

We begin by first building a parse tree representation18 with the edges corresponding to control
flow edges (Figure 12).

Return-Link Transitive
Parameter-Out
Parameter-In

Return-Control
Affect-Param

Call
Flow
Control

UU

if (*y == 1)*x = *x + 1

if (*y == 0)

void main()

y = yx = x

&y&x&y&x

R()int yint x

yy xx

*y*xint *yint *x

R()*y = *y - 1*x = *x - 1

else

else

void R()

Formal-OutFormal-OutFormal-InFormal-In

Actual-OutActual-OutActual-InActual-In

Entry

Entry

Call-Site

Call-Site

Actual-In Actual-In Actual-Out Actual-Out

*y = *y + *x
Call-Site

Actual-In Actual-In Actual-Out Actual-Out

R()

x y x y

*x = *x + 1

Figure 12. Construction of the System Dependence Graph.

18 In order to simplify the figures, the SDG is depicted on the statement level.

- 21 -

Note that initially the formal-out nodes of R are marked as unknown. The first procedure to be
executed in C is main; similarly, we begin by descending into main. In general, each statement
is processed in a top-down, left-to-right fashion. However, contents of the looping statements are
processed twice. At statement [5], we descend into procedure R (since it has not yet been sum-
marized. If it were summarized, we would merely reflect the transitive summary.). We then pro-
cess statements [10],[12],[13], and [15]. At statement [16], procedure R is already in the call
sequence graph, so we do not descend. At this point, the partial summary is empty. However, we
kill the reaching definitions for the variables contained in the actual-out nodes. At statement [17]
since all the reaching definitions for variable *x have been killed, no flow edges are connected.
We continue by processing statements [19],[20],[21], and [22]. As at statement [16], the partial
summary is empty; the reaching definitions for the variables contained in the actual-out nodes are
killed. Figure 1319 shows the state of the SDG immediately before our first partial summary is
calculated.

UU

if (*y == 1)*x = *x + 1

if (*y == 0)

void main()

y = yx = x

&y&x&y&x

R()int yint x

yy xx

*y*xint *yint *x

R()*y = *y - 1*x = *x - 1

else

else

void R()

Formal-OutFormal-OutFormal-InFormal-In

Actual-OutActual-OutActual-InActual-In

Entry

Entry

Call-Site

Call-Site

Actual-In Actual-In Actual-Out Actual-Out

*y = *y + *x
Call-Site

Actual-In Actual-In Actual-Out Actual-Out

R()

x y x y

*x = *x + 1

Figure 13. Construction of the System Dependence Graph.

Figure 14 shows the SDG after calculation of the (partial) summary information and after is has
been reflected to all the call sites encountered so far (in this example, all the call sites have been
encountered). Notice the formal-out node for variable x is now classified as always modified and
the formal-out node for variable y is classified as never modified.

The iterate list for procedure R is R. Figure 15 shows the SDG after one iteration (following the
initial pass). Notice that the classification of variable y has changed to sometimes modified.
Additionally, new transitive edges have been added to the procedure’s (partial) summary. Since
the summary information has changed, we iterate again.

19 To keep the graph from becoming ‘‘busier’’ than it already is, we have neglected to show declaration
and interprocedural edges.

- 22 -

NA

if (*y == 1)*x = *x + 1

if (*y == 0)

void main()

y = yx = x

&y&x&y&x

R()int yint x

yy xx

*y*xint *yint *x

R()*y = *y - 1*x = *x - 1

else

else

void R()

Formal-OutFormal-OutFormal-InFormal-In

Actual-OutActual-OutActual-InActual-In

Entry

Entry

Call-Site

Call-Site

Actual-In Actual-In Actual-Out Actual-Out

*y = *y + *x
Call-Site

Actual-In Actual-In Actual-Out Actual-Out

R()

x y x y

*x = *x + 1

Figure 14. Construction of the System Dependence Graph.

SA

if (*y == 1)*x = *x + 1

if (*y == 0)

void main()

y = yx = x

&y&x&y&x

R()int yint x

yy xx

*y*xint *yint *x

R()*y = *y - 1*x = *x - 1

else

else

void R()

Formal-OutFormal-OutFormal-InFormal-In

Actual-OutActual-OutActual-InActual-In

Entry

Entry

Call-Site

Call-Site

Actual-In Actual-In Actual-Out Actual-Out

*y = *y + *x
Call-Site

Actual-In Actual-In Actual-Out Actual-Out

R()

x y x y

*x = *x + 1

Figure 15. Construction of the System Dependence Graph.

- 23 -

Figure 16 shows the SDG after the second iteration has been completed. Another iteration is
required because additional flow edges were added incident to the formal-out nodes. No addi-
tions were made during this third and final iteration and we ascend from the procedure.

SA

if (*y == 1)*x = *x + 1

if (*y == 0)

void main()

y = yx = x

&y&x&y&x

R()int yint x

yy xx

*y*xint *yint *x

R()*y = *y - 1*x = *x - 1

else

else

void R()

Formal-OutFormal-OutFormal-InFormal-In

Actual-OutActual-OutActual-InActual-In

Entry

Entry

Call-Site

Call-Site

Actual-In Actual-In Actual-Out Actual-Out

*y = *y + *x
Call-Site

Actual-In Actual-In Actual-Out Actual-Out

R()

x y x y

*x = *x + 1

Figure 16. Construction of the System Dependence Graph.

Figure 17 shows the complete SDG whereas the algorithm for calculating interprocedural depen-
dencies is presented in Table 7.

6.1. Recursion and Aliasing

If aliasing is present in a recursive procedure, the possibility exists that several alias
configurations may be "spawned" as a result of the dependency calculation. Consider the pro-
cedure fragment in Table 8. This procedure (when called without aliased parameters) will
"spawn" three distinct aliased configurations. They are: R.(1,1,3), R.(1,2,2) and
R.(1,1,1). This does not present a problem since each alias configuration gives rise to a dis-
tinctly named function. In this case the algorithm will iterate over the set of four procedures (the
non-aliased configuration as well as the aliased ones).

7. Calculating Reaching Definitions Using the SDG

Another application for which the SDG can be used is to calculate reaching definitions. Finding
reaching definitions can be thought of as a restricted form of slicing; i.e., computing a slice of
only one "iteration" backwards. Intuitively, each flow edge is followed backward from the target
node and the nodes that have been reached are marked as being in the reaching definition set.
This works for an intraprocedural case. For the interprocedural case, we would like to identify
definitions that span one or more procedure boundaries. For this to occur, we must take into
account both the passing of variables by reference and their subsequent "return" and the actual
return statement mechanism. The interprocedural algorithm is shown in Table 9. Note that this
algorithm requires two phases; it is similar to the slicing algorithm. The screen dump that was

- 24 -

SA

if (*y == 1)*x = *x + 1

if (*y == 0)

void main()

y = yx = x

&y&x&y&x

R()int yint x

yy xx

*y*xint *yint *x

R()*y = *y - 1*x = *x - 1

else

else

void R()

Formal-OutFormal-OutFormal-InFormal-In

Actual-OutActual-OutActual-InActual-In

Entry

Entry

Call-Site

Call-Site

Actual-In Actual-In Actual-Out Actual-Out

*y = *y + *x
Call-Site

Actual-In Actual-In Actual-Out Actual-Out

R()

x y x y

*x = *x + 1

Figure 17. Construction of the System Dependence Graph.

provided from our Ghinsu tool in Figure 18 illustrates the result of finding the reaching
definitions relative to the statement sum = sum.

8. The Interprocedural Ripple Analysis Algorithm

Ripple analysis is slicing in the forward direction. Whereas a slice relative to a particular variable
in a particular statement is the set of all statements that may affect the value of the variable, ripple
analysis will show the potential effect of changing a variable at a selected statement.

Like slicing, ripple analysis is accomplished in two phases. The first phase consists of a traversal
of a particular set of edges starting at a selected node. In the second phase, traversal of a different
set of edges is applied to each node visited during the first phase. The union of the nodes visited
in both phases is the interprocedural slice. In general, all edges are (recursively) followed for-
ward. The edges followed in the first phase are control, data flow, declaration, return-control,
parameter-in, transitive, affect-param, and call edges. The second phase follows the control, data
flow, declaration, return-control, parameter-out, transitive, affect-param, and return-link edges.
These are the same sets of edges followed in slicing, but in the forward direction. Note that in
forward slicing, there is no need for the "short circuit" operation when following return-control
edges.

9. Dicing and Additional Tools

Dicing is an automatic bug location heuristic. As proposed in [Lyl87], a slice is generated from
an incorrectly computed variable at a particular statement. If there exists another variable that is
computed correctly, then the dicing heuristic may be employed. The bug is likely to be associated
with the slice on the incorrectly computed variable minus those associated with the slice on the
correctly computed variable. Dicing can be used iteratively to locate a program bug.

- 25 -

global IterateFlag, change;

main()

{

Construct parse tree;

Rename global and static variables;

Descend(main);

}

Descend(function)

{

OpenScope(function);

// this includes accounting for aliased parameters

Process formal parameters and create Formal-Out nodes for each pass-by-reference parameter;

Process local variables;

for each (statement in function) {

case (statement) {

assignment-statement: CalcAssignment(statement);

return-statement: Calc-Return(statement);

if-statement: Calc-If(statement);

while-statement: Calc-While(statement);

}

}

Link Flow edges based on Formal-Out variables;

CloseScope(function);

}

CalcAssignment(statement)

{

Parse statement to determine defined variable and used variables;

for each (function call in statement) {

if ((function is an alias configuration) AND (the alias configuration does not exist in the SDG))

Create a distinct function for the alias configuration;

if (IterateFlag == FALSE)

CalcFunction(function,callsite);

for each (Actual-Out node) {

Update reaching definition table (based on Sometimes/Always/Never/Unknown information);

Reflect summary information to the callsite;

}

}

Link Flow and Declaration edges based on defined and used variables;

Update reaching definition table (based on defined variables);

Link Return-Control edges based on "reaching" return definitions;

}

CalcFunction(function,callsite)

{

found = AddToCallSequence(function);

Link Call edge (if one does not already exist);

if ((found == FALSE) AND (function is NOT marked)) {

Descend(function);

ComputeSummaryInformation(function);

// call sites are ’known’ by following call edges backwards

Reflect summary information to all (currently known) call sites;

Mark function;

Iterate();

}

if (found == FALSE)

DeleteFromCallSequence(function);

}

Table 7(contnd).
The implementation of the dicing algorithm is straightforward. The dice is computed in two
phases as in calculation of a slice. The only difference is that the action of the slicing algorithm is
reversed. Instead of marking nodes as being contained in the slice, the encountered nodes are
marked as not being in the slice.

- 26 -

int AddToCallSequence(function)

{

// Attempt to locate the function in the calling sequence starting from the head of the backbone.

root = head(ECSG);

while (root != NULL) {

if ((function is found in root) OR (function is found in root’s iterate list))

break;

root = next_backbone_node(root);

}

if (root == NULL) { // not in the list

add function to the tail of the list;

return FALSE;

}

Move all elements of the iterate lists between (and including) root and the tail to

root’s iterate list;

Make a copy of all elements in the backbone between (and including) root and the tail

and add to root’s iterate list;

return TRUE; // found in the list

}

DeleteFromCallSequence(function)

{

if (function is the tail node in the call sequence graph)

Remove the tail node;

}

Iterate()

{

IterateFlag = TRUE;

do {

change = FALSE;

for each (function in iterate list) {

Descend(function);

ComputeSummaryInformation(function,change);

Reflect summary information to all (currently known) call sites;

}

} while (change == FALSE);

}

CalcReturn(statement)

{

Parse statement to determine used variables;

Link Flow edges based on used variables;

Link Return-Control edges based on "reaching" return statements;

// if there are any changes in the function’s return summary, set change = TRUE

IntraSlice, add all marked Formal-In nodes to function’s return summary;

Link Flow edges based on Formal-Out variables;

Update "reaching" return definition table;

ComputeSummaryInformation(function);

Reflect summary information to all call sites;

Kill all reaching definitions;

}

ReflectSummaryInformation(function)

{

Connect Parameter-In, Parameter-Out, and Return-Link Edges;

Connect Affect-Param Edges based on function’s return summary;

Connect Transitive Edges based on function’s transitive summary;

}

ComputeSummaryInformation(function,change)

{

for each (Formal-Out node in function) {

// if there are any changes in the transitive summary, set change = TRUE

IntraSlice;

Associate all Formal-In nodes in the slice with the Formal-Out node and add to function’s transitive summary;

Classify Formal-Out node as Unknown, Never, Sometimes, or Always modified and add to transitive summary.

}

}

Table 7. The Algorithm for Calculating Interprocedural Dependencies.

- 27 -

void R(int *x, int *y, int *z)
{

if (-)
---;

else if (-) {
R(x,x,z);
---;
R(x,y,y);

}
}

Table 8. A procedure fragment.

Figure 18. The Ghinsu tool. The reaching definitions relative to the statement sum = sum are shown.

The SDG is a versatile internal representation. Additional tools can be constructed that can
extract useful information from the SDG. Some of the minor functions or tools that have been
developed for use in the Ghinsu system are described below.

Dependency Analysis of a variable at a particular statement produces a list of variables that
the selected variable is dependent upon. Additional information about each variable in the list is
also displayed. This information is extracted from the slice of the variable.

An intraprocedural slice can be used when the maintainer wishes to limit his/her view to
the scope of only one function.

The ascend only tool allows the maintainer to limit the slice to only the function selected
and the functions that call the selected function. This operation corresponds to slicing phase one
only. Correspondingly, the descend only tool allows the maintainer to limit the slice to only the
function selected and the functions called by the selected function. This operation corresponds to
slicing phase two only.

- 28 -

ReachPhase1(node)

{

if (node is marked)

return;

MarkNodeInReachingSet(traverse);

for each (Parameter-In edge connected to traverse) {

ReachPhase1(FollowParameterInEdge());

}

for each (Flow edge connected to node) {

traverse = FollowFlowEdge();

MarkNodeInReachingSet(traverse);

for each (Parameter-In edge connected to traverse) {

ReachPhase1(FollowParameterInEdge());

}

}

for each (Affect-Parameter edge connected to traverse) {

traverse = FollowAffectParameterEdge();

MarkNodeInReachingSet(traverse);

for each (Parameter-In edge connected to traverse) {

ReachPhase1(FollowParameterInEdge());

}

}

}

ReachPhase2(node)

{

if (node is marked)

return;

MarkNodeInReachingSet(traverse);

for each (Parameter-Out edge connected to traverse) {

ReachPhase2(FollowParameterOutEdge());

}

for each (Return-Link edge connected to traverse) {

MarkNodeInReachingSet(FollowReturnLink());

}

for each (Flow edge connected to node) {

traverse = FollowFlowEdge();

MarkNodeInReachingSet(traverse);

for each (Parameter-Out edge connected to traverse) {

ReachPhase2(FollowParameterOutEdge());

}

for each (Return-Link edge connected to traverse) {

MarkNodeInReachingSet(FollowReturnLink());

}

}

for each (Affect-Parameter edge connected to traverse) {

traverse = FollowAffectParameterEdge();

MarkNodeInReachingSet(traverse);

for each (Parameter-Out edge connected to traverse) {

ReachPhase2(FollowParameterOutEdge());

}

for each (Return-Link edge connected to traverse) {

MarkNodeInReachingSet(FollowReturnLink());

}

}

}

Table 9. Algorithm for Calculating Reaching Definitions Using the SDG .

- 29 -

Show definitions displays all the definitions of a particular variable.

10. Related Work

Weiser[Wei84] has built slicers for FORTRAN and an abstract data language called Simple-D.
His slices were based on flow-graph representation of programs. As far as we know, no other
operational slicers have been built. In addition, Weiser’s method does not produce an optimum
slice across procedure calls because it cannot keep track of the calling context of a called pro-
cedure. Methods for more precise interprocedural slicing have been developed by Horwitz
[Hor88] where parameters are passed by value-result. This is an extension of the program depen-
dence graph presented in [Fer87]. However, this models a simple language that supports scalar
variables, assignment statements, conditional statements, and while loops.

The dependence graph developed by Horwitz differentiates between loop-independent and
loop-carried flow dependency edges. Our method treats these as a single type of edge -- the data
flow edge -- which simplifies construction of the program dependence graph.

Our method of calculating interprocedural dependences does not use linkage grammar as
used in Horwitz’s algorithm[Hor90]. Our algorithm is conceptually much simpler. The linkage
grammar utilized by Horwitz includes one nonterminal and one production for each procedure in
the system. The attributes in the linkage grammar correspond to the input and output parameters
of the procedures. After constructing the linkage grammar, the algorithm determines the pro-
cedure which does not call any other procedure and calculates its transitive dependencies and
reflects them to other procedures. Our method descends to the called procedures in the order of
their call in the program. When a called procedure does not call any other procedure, its transi-
tive dependencies are reflected on the other procedures which called this procedure. Recursion is
handled by a method of iteration over the recursive procedure(s). The called procedure always
returns to the correct address in the calling procedure. This completely eliminates the use of link-
age grammar and construction of subordinate characteristic graphs which makes our algorithm
more efficient.

Harrold, et. al., [Har89] calculate interprocedural data dependencies in the context of inter-
procedural data flow testing. Their algorithm requires an invocation ordering of the procedures.
Additionally, when recursive procedures are present, processing may visit each node p times
where p is the number of procedures in the program. As above, we do not need to calculate an
invocation ordering. Also, we need to iterate over only the recursive procedures, not the entire
program.

Agrawal[Agr89] has provided algorithms for intraprocedural dynamic slicing. The Ghinsu
tool, however, uses the concept of static slicing. The main disadvantage of dynamic slicing is
that the program dependence graph depends upon the test data, i.e. only those portions of the
graph will be built which fall on the execution path of the test data. In contrast, a static slice is
independent of the test data. A dynamic slice can be considered to be a subset of a static slice. A
technique for handling slices for recursive procedures has been suggested by Hwang [Hwa88]
which constructs a sequence of slices of the system - where each slice of the sequence essentially
permits only one additional level of recursion - until a fixed point is reached. Moreover, this
algorithm solves only self-recursive procedures and has no mechanism for handling mutually
recursive procedures.

11. Future Work

We intend to investigate the problems of pointer variables in the context of the internal represen-
tation that we employ. Since the aliasing problems with pointer variables in C are in general
unsolvable, we are exploring user-guided approximations. Additionally, we intend to handle C-
like, unstructured goto statements. This will require a flow-graph to be imposed on the parse

- 30 -

tree representation.

12. References

[Agr89] H. Agrawal. and J.R. Horgan. ‘‘Dynamic Program Slicing’’, Technical Report SERC-
TR-56-P, Software Engineering Research Center, Computer Science Dept., Purdue University.

[Aho74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. ‘‘The Design and Analysis of Computer
Algorithms’’, Addison-Wesley, Reading, MA.

[Aho85] A.V. Aho, R. Sethi, and J.D. Ullman. ‘‘Compilers: Principles, Techniques and Tools’’,
Addison-Wesley, Reading, MA.

[Bad88] L. Badger and M. Weiser. ‘‘Minimizing Communications for Synchronizing Parallel
Dataflow Programs’’, In Proceedings of the 1988 International Conference on Parallel Process-
ing, Penn State University Press, PA.

[Ban79] Banning, J.P. ‘‘An Efficient Way to Find the Side Effects of Procedure Calls and the
Aliases of Variables’’. In Conference Record of the Sixth ACM Symposium on Principles of
Programming Languages (San Antonio, Tex., Jan. 29-31,1979). ACM, New York, 1979.

[Boe75] B.W. Boehm. ‘‘The High Cost of Software, Practical Strategies for Developing Large
Software Systems’’, E. Horowitz (ed.). Reading, Mass: Addison-Wesley.

[Cal88] D. Callahan. ‘‘The Program Summary Graph and Flow-Sensitive Interprocedural Data
Flow Analysis’’, In Proceedings of the SIGPLAN 1988 Conference on Programming Language
Design and Implementation, Atlanta Georgia, June 22-24, 1988.

[Fer87] J. Ferrante, K. Ottenstein, and J. Warren. ‘‘The Program Dependence Graph and its Use
in Optimization’’, ACM TOPLAS, July 1987.

[Har89] M. J. Harrold and M. L. Soffa. ‘‘Selecting Data for Integration Testing

[Hor88] S. Horwitz, J. Prins, and T. Reps. ‘‘Integrating Non-interfering Versions of Programs’’,
in Proceedings of the 15th ACM Symposium of Programming Languages, ACM Press, N. York.

[Hor89] S. Horwitz, J. Prins, and T. Reps. ‘‘Integrating Non-interfering Versions of Programs’’,
ACM TOPLAS, July 1989.

[Hor90] S. Horwitz, T. Reps, and D. Binkley. ‘‘Interprocedural Slicing Using Dependence
Graphs’’, ACM TOPLAS, January 1990.

[Hwa88] J.C. Hwang, M.W. Du, C.R. Chou. ‘‘Finding Program Slices for Recursive Pro-
cedures’’, In Proceedings of the IEEE COMPSAC 88, IEEE Computer Society, 1988.

[Kas80] Kastens, U. ‘‘Ordered Attribute Grammars’’. Acta Inf. 13,3, 1980.

[Ker88] B.W. Kernigham and D. M. Ritchie. ‘‘The C Programming (ANSI C) Language’’, 2nd.
Edition, Prentice Hall, Englewood Cliffs, New Jersey.

[Leu87] H.K.N. Leung and H.K. Reghbati. ‘‘Comments on Program Slicing’’, IEEE Transac-
tions on Software Engineering, Vol. Se-13 No. 12, December 1987.

[Liv91] P.E. Livadas and S. Croll. ‘‘The C-Ghinsu Tool’’, Technical Report, Software Engineer-
ing Research Center, SERC-TR-55-F, December 1991.

[Lyl86] J.R. Lyle and M. Weiser. ‘‘Experiments in Slicing-based Debugging Aids’’, In Elliot
Soloway and Sitharama Iyengar, editors, Empirical Studies of Programmers, Ablex Publishing
Corporation, Norwood, New Jersey, 1986.

[Lyl87] J.R. Lyle and M. Weiser. ‘‘Automatic Program Bug Location by Program Slicing’’, In
Proccedings of the 2nd International Conference on Computers and Applications, June 1987.

[Ott84] K.J. Ottenstein and L.M. Ottenstein. ‘‘The Program Dependence Graph in a Software
Development Environment’’, In Proceedings of the ACM SIGSOFT/SIGPLAN Software

- 31 -

Engineering Symposium on Practical Software Development Environments (Pittsburgh, Pa.,
April 23-25, 1984). ACM SIGPLAN Notices 19,5, May 1984.

[Par86] G. Parikh. ‘‘Handbook of Software Maintenance’’, Wiley-Interscience, New York, New
York 1986.

[Reps88] T. Reps and W. Yang. ‘‘The Semantics of Program Slicing’’, TR-777, Computer Sci-
ences Dept., University of Wisconsin, Madison, June 1988.

[Reps89] T. Reps and T. Bricker. ‘‘Illustrating Interference in Interfering Versions of Pro-
grams’’, TR-827, Computer Sciences Dept., University of Wisconsin, Madison, March 1989.

[Wei81] M. Weiser. ‘‘Program Slicing’’, In Proceedings of the Fifth International Conference on
Software Engineering, San Diego, CA, March 1981.

[Wei82] M. Weiser. ‘‘Programmers Use Slices When Debugging’’, CACM July 1982.

[Wei84] M. Weiser. ‘‘Program Slicing, IEEE Transactions on Software Engineering, July 1984.

[Yang89] W. Yang, S. Horwitz, and T. Reps. ‘‘Detecting Program Components With Equivalent
Behaviors’’, TR-840, Computer Sciences Dept., University of Wisconsin, Madison, June 1989.

