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Mathematics is frequently described as “the science of pattern,” a characterisation
that makes more sense than most, both of pure mathematics, but also of the
ability of mathematics to connect to the world teeming with patterns, symmetries,

regularities, and uniformities
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| awrence Moss



A simple game

The rules of the game:

e — O
oo — O
O — ©
ce — ©

A starting point:

000000000 O0OO00O0O0O OO0

Who wins? (i.e. put the last white)
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May | always win?
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May | always win? Do we get always the same result?
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May | always win? Do we get always the same result? Does the game terminate?
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What are the basic operations that have been used?
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What are the basic operations that have been used?

1- Matching
The data: @@ 00 O e O ee
The rewrite rule: - — e
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What are the basic operations that have been used?

1- Matching

The data: e® 0 O e O ee

The rewrite rule: - — e

2— Compute what should be substituted
The lefthand side: °
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What are the basic operations that have been used?

1- Matching

The data: e® 0 O e O ee

The rewrite rule: - — e

2— Compute what should be substituted
The lefthand side: °

3— Replacement
The new generated data: ee| e |[ce0 ee
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What are the basic operations that have been used?

1- Matching
The data: @@ @0 O e O oo

The rewrite rule: - — e

2— Compute what should be substituted
The lefthand side: o

3— Replacement
The new generated data: ee| e |[ce0 ee

Note that, that last list is a NEW object

5— ESSLLI-2004, Nancy The rewriting calculus Introduction



Let us do simple math: just addition in Peano arithmetic (1)
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Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
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Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example
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Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?
Objects build from a constant called 0 and a unary operator s (successor).

Some example
s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11
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Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27

What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +
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Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27

What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).

Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +

For example we can write s(s(0)) + s(s(0)), 0+ s(s(s(s(s(s(s(s(s(s(0))))))))))
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Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +
For example we can write s(s(0)) + s(s(0)), 0+ s(s(s(s(s(s(s(s(s(s(0))))))))))

how do we express the result 7
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Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +
For example we can write s(s(0)) + s(s(0)), 0+ s(s(s(s(s(s(s(s(s(s(0))))))))))

how do we express the result 7

by the way . . ., what is - result ?
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Let us do simple math: just addition in Peano arithmetic (2)

Peano gives a meaning to addition by using the following axioms:

0+ x X
s(r) +y = s(z+y)

7— ESSLLI-2004, Nancy The rewriting calculus Introduction



Let us do simple math: just addition in Peano arithmetic (2)

Peano gives a meaning to addition by using the following axioms:

Thus
s(s(0)) + s(s(0))
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O+x = x
s(z) +y = s(z+y)
s(s(0) + s(s(0))
s(s(0+ s(s(0))))
s(s(s(s(0))))
(0) + s(s(s(0
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Let us do simple math: just addition in Peano arithmetic (2)

Peano gives a meaning to addition by using the following axioms:

O+x = x
s(z) +y = s(x+y)
Thus
s(s(0)) +s(s(0)) = s(s(0) + s(s(0))
= s(s(0+s(s(0))))

s(s(s(s(0))))

s(0) + s(s(s(0)))

0+ 0+ 0+ s(s(s(s(0))))

Is there a better result?
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Let us do simple math: just addition in Peano arithmetic (3)

Let us COWputG a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)
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Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus s(s(0)) + s(s(0)) — s(s(0) + s(s(0)) — s(s(0+ s(s(0)))) — s(s(s(s(0))))
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Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus s(s(0)) + s(s(0)) — s(s(0) + s(s(0)) — s(s(0+ s(s(0)))) — s(s(s(s(0))))

Is this computation termainating
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Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus s(s(0)) + s(s(0)) — s(s(0) + 5(s(0)) — s(s5(0+ s(5(0)))) — s(s(s(5(0))))
Is this computation termainating

is there always a result (e.g. an expression without +)
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Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus 5(5(0)) 4 s(s(0)) — s(s(0) + 5(5(0)) — 5(s(0 + 5(5(0)))) — s(s(5(5(0))))
Is this computation termainating
is there always a result (e.g. an expression without +)

is such a result unique 277
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What are the basic operations that have been used? (2)
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What are the basic operations that have been used? (2)

1- Matching
The data:

The rewrite rule:
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What are the basic operations that have been used? (2)

1- Matching

The data: s(-) + -
o e

2— Compute what should be substituted

The instanciated lhs: _

The rewrite rule:
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What are the basic operations that have been used? (2)

1- Matching

The data: s(-) + -
]

2— Compute what should be substituted

The instanciated lhs: _

3— Replacement
The new generated data: | s(s(0)+s(s(0)))

The rewrite rule:
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fibonacci

o] fib(0)  —
6] fib(1)  —

1
1
] fib(n) —  fib(n — 1)+ fib(n — 2)
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fibonacci

o]  fib(0) — 1
8] fib(l) — 1
vl fib(n) —  fib(n —1) 4+ fib(n — 2)
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fibonacci

o]  fib(0) — 1
8] fib(l) — 1
7] fib(n) —  fib(n — 1) + fib(n — 2)

fib(2) + fib(1)
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fibonacci

o]  fib(0) — 1
8] fib(l) — 1
vl fib(n) —  fib(n —1) 4+ fib(n — 2)

fib(2) + fib(1) — fz'b(2)+.
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fibonacci

Y] fib(n)

fib(2) + fib(1) —  fib(2) + 1]
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fibonacci
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fibonacci

£ib(1) + fib(0) + 1
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fibonacci

fib(1) + fib(0) +1 —
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fibonacci

fib(1) + fib(0) +1 —

Finally fib(3) =3, fib(4) =5, ...
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Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction



Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction



Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction



Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction



Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

L-systems (Lindenmeier)
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Ecological Rewriting

Plant development

productions

http://www.cpsc.ucalgary.ca/Redirect/bmv/vmm-deluxe/Section-08.html
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/etc/sendmail.cf

#####  O(#)nullrelay.m4 8.19 (Berkeley) 5/19/1998  #it#it#

This configuration applies only to relay-only hosts. They send
all mail to a hub without consideration of the address syntax
or semantics, except for adding the hub qualification to the
addresses.

This is based on a prototype done by Bryan Costales of ICSI.

H O H O H H O H H H H

HHHHHHHH AR HH AR HH AR HH AR R AR HHHRHBHRHHHRHBFHHHHRHFHRHAGHHFRHH SRR H SRR RS RH
HHHHHHHH AR HH SRR AR HH AR B H AR B RS R BB SRR B SRR PSR H B G RHFH RS GHH SRR GRS BH SRR SRS
HHH###

HHH### REWRITING RULES

HHH#H##

HHHHAHHH AR HH AR HHF R HHF R HHF R HHH R HHH R HHF R H AR H AR HFFRH AR AR RS HH SRR H SR H
HHHHHHHH AR HH AR HHF R HH AR HH SRR HH R HHHRHHHRH B G R HBHHHFFRHAGHH SRR SRR H SRR RS RH

#H###HHHH#H A HHHH RS HH RS H S HHH SRR TS H?
### Ruleset 3 —-— Name Canonicalization ###
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HAHHHHHHHHHHHHHHFRHHH AR HH SRR H SRR SRR SRR RS RH

53

# handle null
R$Q

# strip group:

REx*

R$x < $x > $x
R$x :: $x <@>
R:include: $x*
RE*x : $x <©>

input

$0 <O@>

syntax (not inside angle brackets!) and trailing semicolon

<@>

<@>

$:

&L B fH &L

$1 <@> mark addresses

$1 < $2 > $3 unmark <addr>

$1 :: $2 unmark node: :addr
:include: $1 unmark :include:...
$2 strip colon if marked

R H R R R
### Ruleset 4 -- Final Output Post-rewriting ###

14— ESSLLI-2004, Nancy
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HHHHHHHH AR HHH R H SRR SR HH SR HH AR B H SRR B SRR B SRR B SR RIS H
sS4

R$*x <@> $@ handle <> and list:;

# strip trailing dot off before passing to nullclient relay
R$* @ $+ . $1 @ $2
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Equational description of a sorting algorithm

sorts NeList List ; subsorts Nat < NelList < List ;
operators

nil : List ;

@ @ : (List List) List [associative id: nil] ;

@ @ : (NelList List) NelList [associative] ;
hd @ : (NeList) Nat ;
tl @ : (NeList) List ;
sort @ : (List) List ;
end
rules for List
X, Y : Nat ; L L’ L’’ : List;
hd (X L) => X ; tl (X L) =L ;
sort nil => nil .
sort (L XL>YL”) = sort (LYL” XL”) if Y < X .
end

sort (6 54321 =
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Back with the simple game

The rules of the game:

®e® — O
oo — O
0 — ©
ce — ©

A starting point:

000000000 O00OO00O0O0O 00

From a given start, is the result determinist?
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€0 000000000000 eO0
€0 0000000000 @ 80
NN Nl N NolNeN NeleX ¥ Jol
SN NeX N NolNol Nelel Y
SN JoX X NoloN Wolt X
00008000 ee
ceeeocoOeOee
©0 00000 00
@0 000000
® @00 000
LN NeX ol
® o 000
®0 o0
060
[ )

©)

Analysing the different cases
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Disjoint redexes:

Is the same as:
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No disjoint redexes (central black):

but

or

but
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No disjoint redexes (central white):

but

or

but
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Thus in all the cases:
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0+«

x *x 0
i(x+y)
x* (Y + 2)
(zxy) *y
i(x) xy
i(0)

T+ 1y
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Alternative Rings

X 0x*xx
0 i(x) + x
i(z) + i(y) 1(i(x))
(@xy)+(xxz) (x+y)*z
0 (x+y)+ =
y+x

The rewriting calculus

8 O O

/N

T xz)+ (y*2)
z+ (y+ 2)

Introduction



Can we prove by rewriting the Moufang ldentities?

(xxy)*xx = xx(y*zx)

(R.Moufang, 1933)
(S.Anantharaman and J.Hsiang, JAR 6, 1990)
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An additive group G is defined by the set of equalities

r+e = X
r+y+z) = (r+y) +z
r+i(z) = e

How to check that two elements of the group are the same?

i(x+y) =?=1i(y) +i(x)

25— ESSLLI-2004, Nancy The rewriting calculus Introduction



Then

ix+y)="=1ily)+i(z) & ilz+y —... > e—...
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Tr+e
e+

z+ (y+ 2)
x +i(x)

T

The rewriting calculus

An equivalent deterministic term rewrite system

— i(y) +i(z)

Introduction



XSLT

Note that XSLT is just a (special) kind of rewriting language,
acting on XML documents
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XSLT: example 1/3

Document Example D.1 in the Appendix of XSLT specification
<xsl:stylesheet
version="1.0"  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtmll/strict">

<xsl:template match=doc>
<html>
<head>
<title> <xsl:value-of select=title /> </title>
</head>
<body> <xsl:apply-templates/> </body>
</html>
</xsl:template>

<xsl:template match=chapter/title>
<h2> <xsl:apply-templates/> </h2>
</xsl:template>
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XSLT: example 2/3

When applied to
<doc>
<title>Document Title</title>
<chapter>
<title>Chapter Title</title>
<section>
<title>Section Title</title>
<para>This is a test.</para>
<note>This is a note.</note>
</section>
<section>
<title>Another Section Title</title>
<para>
This is
<emph> another </emph>
test.
</para>
<note> This is another note. </note>
</section>
</chapter> </doc>
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XSLT: example 3/3

we get as result the HTML document

<html><head><title>Document Title</title></head><body>

<h1>Document Title</h1><h2>Chapter Title</h2><h3>Section Title</h3>
<p>This is a test.</p><p class=note>

<b>NOTE:</b>This is a note.</p><h3>Another Section
Title</h3><p>This is <em>another</em> test.</p><p class=note>
<b>NOTE:</b>This is another note.</p>

</body></html>

Which we usualy prefer to see as

Window Help

CRORO)

@ @ Eﬁ\e:fﬁ\a‘\umes]usels.’(

m2 bibtexDB dico acisi-C5-secu aciSI-CS

Document Title

Chapter Title

Section Title
This is a test.

NOTE:This is a note.
Another Section Title

This is another test.

NOTE:This is another note.

30— ESSLLI-2004, Nancy The rewriting calculus Introduction



The 4 basic ingredients of a rewriting step: 1- The rewritten
objects

They can be:
e terms like 2 4 i(3) or XML documents

e strings like “What is rewriting?” sed performs string rewriting
e graphs

e sets

e multisets

e higher-order terms
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The 4 basic ingredients of a rewriting step: 2- Substitution

Graphting = First-order substitution
Replace all the instanciated variables by their values

Example: Apply o ={x+— b,y — a} on f(x,g(z,y))

Denoted either o(g(z, g(x,y))) or (g9(x,g(x,y)))o
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The 4 basic ingredients of a rewriting step: 3- Matching
Finding a substitution o such that

T
o=t
is called the matching problem from [ to ¢, modulo the theory T

When T = (), it is decidable in linear time in the size of ¢
It induces a relation on terms called subsumption

Example: f(x, g(z,y))<pf (b, g(b,a))
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The 4 basic ingredients of a rewriting step: 4- Replacement

At a given occurrence of a term, replace the existing subterm by another one

Example:
Put f(x,a) at occurence 1.1 in g(g(a,x), f(b,0))
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How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:
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How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R
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How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R

— find a subterm of ¢
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How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R

— find a subterm of ¢

— that matches the left hand side of the rule
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How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R
— find a subterm of ¢
— that matches the left hand side of the rule

— and replace that subterm by the right hand side of the rule instanciated by the
match

Denoted ¢t =7 t/
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How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R
— find a subterm of ¢
— that matches the left hand side of the rule

— and replace that subterm by the right hand side of the rule instanciated by the
match

Denoted t =5 t/
Simple?. . .
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How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R
— find a subterm of ¢
— that matches the left hand side of the rule

— and replace that subterm by the right hand side of the rule instanciated by the
match

Denoted t =5 t/
Simple?. . . let's sum-up
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What is rewriting? (1/2)

1- Discriminate
to give the possibility to discriminate directly
“one image is better than ten explanations”

36— ESSLLI-2004, Nancy The rewriting calculus Introduction



What is rewriting? (1/2)

1- Discriminate
to give the possibility to discriminate directly
“one image is better than ten explanations”
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What is rewriting? (1/2)

1- Discriminate
to give the possibility to discriminate directly
“one image is better than ten explanations”

lambda-calculus is not discriminating: one needs to encode matching
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What is rewriting? (2/2)

1- Discriminate
2- Transform what has been discriminated
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What is rewriting? (2/2)

1- Discriminate
2- Transform what has been discriminated

-| o« @« — e |discriminates the repetition of two black bullets

e o0 e ¢ 0 O @ @ |srewritten, for example,into e o e o0 o e e
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What is rewriting? (2/2)

1- Discriminate
2- Transform what has been discriminated

-| o« @« — e |discriminates the repetition of two black bullets

e o0 e ¢ 0 O @ @ |srewritten, for example,into e o e o0 o e e

-l xx0 — 0 |discriminates objects where x is arbitrary

3 x0 Isrewritteninto 0

37— ESSLLI-2004, Nancy The rewriting calculus Introduction



1- Discriminate

What is rewriting? (2/2)

2- Transform what has been discriminated

® O 6 ¢ O O o o

discriminates the repetition of two black bullets

-l x0 — 0

discriminates objects where x is arbitrary

3 %X 0

Is rewritten, for example, into

Is rewritten into 0

-lx et x —

X

r=3
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r=3

IS rewritten into en
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Important: Rewriting is always in need of a strategy

e to chose the appropriate rule
e to find an appropriate occurrence

e to chose the appropriate result
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Examples using ELAN

ELAN, a system for clever rewriting: deduction modulo at work

ELAN= computation rules + (deduction rules + strategies)

Implements rewriting for

e computation Fibonacci
e proving Prop. Seq. Calculus
e solving 3 queens
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Example 1: Very simple ...

module fib_builtin
import global builtinlInt;
end

operators global
fib(@) : (builtinInt) builtinInt ;
end

rules for builtinInt
n : builtinInt ;

global

[] £ib(0) => 1 end

[1 fib(1) => 1 end

[1 fib(n) => fib(n - 1) + fib(n - 2) if greater_builtinInt(n,1) end

end

end

fib(33) = 5702887 11405773 rewrite steps in 0.695 s 16.411.184 rewrite/s

Digital 500/500, 128Mo
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Example 2: propositional sequent calculus

H PFQ
HFEF-PQ

neg —r

rules for Seq
P, Q, R : Pred; H : Pred; 51, S2 : Seq;
global
[negd] H |- P : Q =>81
where S1 := (dedstrat) H : P |- Q
end
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The true code

Built (for later use) the proof term:

[negr] H |- "P : Q => [#negd,H |- "P : Q] <> 81
where S1 := (dedstrat) H : P |- Q
end
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strategies for Seq
implicit

[] SetRules

end
end

strategies for Seq
implicit
[] dedstrat
end

end
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Strategies

=> first one(
axio
,negd ,disjd
,impd ,negg ,conjg
,disjg ,conjd ,impg)

=> first one( Start );
repeat*( SetRules )
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The resulting proof term

[dedstrat] (A |=> B |- ~(B) |=> ~(4))
evaluates to:

#infer [#impd] < (A#to B)#vdash(#neg(B)#to#neg(A))>
<#infer[#negd] <(A#to B),#neg(B)#vdash#neg(A)>
<#infer [#negg]<A, (A##ito B) ,#neg(B)#vdash EmptyP>
<#infer [#impg] <A, (A#to B)#vdash B>

<#tinfer [#axiom] <A,B#vdash B><#mbox<>>&

#infer [#axiom] <A#vdash A,B><#mbox<>>>>>>

end
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Example 3: 8 queens

is represented by the list (3,1,0,2)
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Module nqueensAC

operators

global
queensAC(@) : (int) listl[int] ;

local
queens(@,Q) : (set listl[int]) listl[int] ;
0k(@,0,0) : ( int int list[int] ) bool;
@U@ : (set set) set (AC);
(@) : (int) set ;
[@ U @] : (int set) set ;
Set (@) : (int) set ;
Empty : set ;

end
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rules for list[int]
n:int;
global
[1 queensAC(n) => queens(Set(n-1),nil)

rules for list[int]
pl: int; s,sl:set ; 1,11: list[int];

local
[final] queens(Empty,l) => 1 end
[queensrule] queens(s,l) => queens(sl,pl.1)

where (set) [pl U sl1] :=(extractPos) s
if ok(1,pl1,1)

strategies for listl[int]

implicit
[] queens => repeat*(dk(queensrule)); first(final)
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Related systems

e TOM (tom.loria.fr)
e ASF+SDF

e OBJ, MAUDE

e STRATEGO

o LPG
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Some applications

e XML and XSLT

e Program transformation (e.g. compilation)
e Simplification (e.g. computer algebra)

e Computation

e Production rules

e Model checking

e Proof search —Cariboo—

e Chemistry
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Syntactic Matching: A rule based description

Delete

N
Decomposition

N
SymbolClash

N
MergingClash

N
SymbolVariableClash

—>

t<<t AP

P

Fltty. o t)=<f(t,. ..
/\z’:l,...,n tZ«t; NP
f(tl, ce ,tn)*«g( /1, c
fail

<t N\Nx=<t' NP
fail

f(t,...
fail

tn)=<<x AP

) NP

b)) NP
it f#g
if t £t
if € X
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Find a match

T+ (y+y) K 1+4(4+3)
= Decomposition <1 N yxy = 4x3
=>Decomposition LK1 A y=<4 N y=<3

:>MergingC|ash fail
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Find a match

T+ (y+y) K 1+4(4+3)
= Decomposition <1 N yxy = 4x3
=>Decomposition LK1 A y=<4 N y=<3

= MergingClash fail

T+ (y*3) K1+ (4%3)
=>Decomposition L1 A y*x3=4x%3
=>Decomposition T<<1 A y=<4 N 3<3
= Delete T=<K1 N y=<4
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Theorem

The normal form by the rules in Match, of any matching problem ¢t<t’ such that
Var(t) N Var(t") = (), exists and is unique.

1. If it is fail, then there is no match from ¢ to t'.

2. If it is of the form A, ; z;=<t; with I # (), the substitution o = {x; — t;}ics is
the unique match from ¢ to t’.

3. If it is empty then ¢ and t’ are identical: ¢t = /.
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Aims of the p-calculus

e [o define at the same level

rewrite rules

rewriting strategies

applications of rules and strategies
results

N I N R
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Aims of the p-calculus

e [o define at the same level

rewrite rules

rewriting strategies

applications of rules and strategies
results

N I N R

e To unify:

[ first-order rewriting (ELAN, Maude . . .)
L] A-calculus

53— ESSLLI-2004, Nancy The rewriting calculus Introduction



For the rewriting RELATION

flz,y) — @

<~
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For the rewriting RELATION

flz,y) — @

<~

f(a,b)
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For the rewriting RELATION

flz,y) — @

<~

f(a,b) — R a

54— ESSLLI-2004, Nancy The rewriting calculus Introduction



For the rewriting CALCULUS

f(XaY) - X

Abstraction Operator
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For the rewriting calculus

f(XvY) - X f(avb)
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For the rewriting calculus

(F(X,Y) - X))+ f(a,b)

Application Operator
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For the rewriting calculus

(F(X,Y) - X))+ f(a,b)

Application Operator

Rule to evaluate such a term: (p)
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For the rewriting calculus
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For the rewriting calculus

(fxY) ~ X )- flab)

o)
={X —a,Y — b}
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For the rewriting calculus

(fxY) - X ) flab)

o)
={X —a,Y — b}
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For the rewriting calculus
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For the rewriting calculus
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For the rewriting relation

fay) ==

g(a,b)
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For the rewriting relation

fay) ==

g(a,b) =R
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For the rewriting calculus

f(XvY) - X g(avb)
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For the rewriting calculus
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Related topics and works

e pattern lambda calculus (Peyton-Jones, Van Oostrom, Colson)
e pattern calculus (Jay)

e combination of rewriting and HO features

CRS (Klop)

lambda calculus and rewriting (Breazu Tannen & Gallier, Okada)
CC and rewriting (Blanqui, Jouannaud, Okada)

HO rewriting (Nipkow)

e ML, Haskel, Rogue
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(Some) Recommended Readings

e The Rewriting Calculus Home page
http://www.loria.fr/“faure/TheRhoCalculusHomePage/

e Repository of Lectures on Rewriting and Related Topics
www.loria.fr/“ckirchne/

e Online book on rewriting www.loria.fr/“ckirchne/rsp.ps.gz

e L’intelligence et le calcul (may be translated to English?)
Jean-Paul Delahaye
Look also at his web page

e Term Rewriting Systems
Terese (M. Bezem, J. W. Klop and R. de Vrijer, eds.)
Cambridge Univerty press, 2002

e Term Rewriting and all That
Franz Baader and Tobias Nipkow
Cambridge Univerty press, 1998
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The Untyped Syntax

P = T Patterns
T = X|IK|P—->T|TT||PT|T|T, T Terms

1. T7 — T5 denotes a rule abstraction with pattern 17 and body 15
... the free variables of 17 are bound in T5

2. |11 < T5|T5 denotes a delayed matching constraint
... the free variables of T} are bound in 75 but not in 75

3. The terms can be also structures built using the symbol “,

4. We work modulo the a-convention and the hygiene-convention
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Some p-terms

(X = X) a similar to the A-term (A\z.x) a

(XX X)X —-XX) the well-known A-term (ww)
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Some p-terms

(X = X) a similar to the A-term (A\z.x) a

(X X X) (X —- X X) the well-known A-term (ww)
(a =) a the application of the rule a — b to the term «a

(f(X,Y)—g(X,))) f(a,b) a classical rewrite rule application
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Some p-terms

(X = X) a similar to the A-term (A\z.x) a

(X=X X)) (X —-XX) the well-known A-term (ww)

(a —b) a the application of the rule a — b to the term a
(f(X,Y)—g(X,))) f(a,b) a classical rewrite rule application

(a = b,a—c)a “non-deterministic” application
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Some abbreviations

(T;)=t-m 2 Ty,...,T, structure/object (n € Nat)
T, Ts 2 Ty T5 Ty Kamin's self-application
Operator | Associate | Priority
_ Left >
- < - Right >
_—> _ Right >
., Right >
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Matching Equations and Solutions

1. A match equation is a formula of the form T7<T5.

2. A matching system T2 | 6\ T;=<<T is a conjunction of match equations,
1=VU...MN

where A is associative, commutative, and idempotent.

3. A matching system T is successful if it is empty or:
(a) has the shape A Xi<T; AN K;j=<Kj;

1=0...n 7=0...m

(b) for all b,k =0...n, such that h # k, we have X # Xj:

4. A substitution o = {T1/X,---T,/X,} is the solution of a successful matching
system T. The set of solutions of T is denoted by Sol(T).
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Reduction relies on matching power

Matching is parametrized over a theory T and an order < on substitutions

SOZ(Tl«TTQ) = O01y.-+50p,...

O < SOZ(Tl«TTQ) = T O'(Tl) =75

o1 < ...= 0y, (n < 00)

THEORIES ALGORITHM
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The Small-step Reduction Semantics

(P—-A)B —, [P<KBJA
[P < B]A v A(g(p*«B) it 46. P0 —T B

(A,B)C — AC,BC
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The Small-step Reduction Semantics

(P—DA)B — [P<<B]A

P < B|A —, A64,...,A0,,...
with {61,...,0,,...} = Sol(P=<1B)

(A,B)C — AC,BC
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Intuition on the small-step Semantics

(P—-A)B —, [P<B|A
—. A6
if 30. P60 =1 B

(P—-A)B —, [P<BJA
STOP!
if A0. PO =1 B
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Some p-reductions
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Some p-reductions
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Some p-reductions
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Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—=b)a s

(f(X,Y) = g(X,Y)) (f(a,0))

(f(X,Y) = g(X,))) (9(a,b))

(a = b,a—c) a
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Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—b)a —s b

(f(X,Y) = g(X, D)) (f(a,b)) = [(X, D) < fla,0)|g(X, D) = g(a, D)

(f(X,Y) = g(X,Y)) (g9(a,b))

(a = b,a—c) a
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Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—b)a —s b

(f(X,Y) = g(X,Y)) (f(a,b))
= |f(X,Y) < fla,0)]g(X,Y) s gla,b)

(f(X, V) = g(X,))) (9(a, b)) = (X, D) < gla,b)]g(X, )

(a = b,a—c) a
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Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—b)a —s b

(f(X,Y) = g(X,Y)) (f(a,b))
= |f(X,Y) < fla,0)]g(X,Y) s gla,b)

(f(X,Y) = g(X,Y)) (g9(a,b)) = [f(X,Y) < gla,b)lg(X, D)

(@ —=>b,a—c)a +p (a—=b)a,(a—c)arusbc
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Simple Success Reduction

(f(X) = 3 —=3)X) fB) = LX) <FB)B—=3) X)
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Simple Success Reduction

(f(X) = 3 —=3)X) fB) = LX) <FB)B—=3) X)

(f(X) = B =3)X) F(3) = (f(X) = [3<X]3) f(3)
p LX) < OB < X)3)
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Simple Failure Reduction

(f(X) = B =3)&) f(4) = [f(&) < fHAIB —3) &)
— (3 —3) 4

— |3 <43
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Simple Failure Reduction

(f(X) = 3 —=3)X) f(4) = F(X)<FEIE—=3) L)
— (3 —+3)4
. [3< 43

(f(X) = B =3)&) f(4) = (f(X) = [3<X]3) f(4)
—  [f(X) < fA]([3 < X]3)
— |3 < 4]3
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On the (non-)confluence

Variables in applicative position

(XY — X)((Z — Z)a)

pc;/ \Fas
XY < (2 — Z)alX (XY — X)([Z2 <a]Z)
ob | | oo
Z -+ Z (XY — X)a

73— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus



On the (non-)confluence

Non-linear patterns
C rec—-9S — X — (d(Y,Y) = e) d(X,Srec X)

A rec. — S' — C.rec S".rec

> 1>
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On the (non-)confluence

Non-linear patterns

C 2 rec»S—-X—(dY,Y)—e)dX,SreX)

A 2 red -8 —CrecS'.rec

A.rec A.rec

— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)
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On the (non-)confluence

Non-linear patterns

C 2 rec»S—-X—(dY,Y)—e)dX,SreX)
A 2 red -8 —CrecS'.rec
A.rec A.rec
— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)
Iﬁ?mg é
and

Crece— (d(Y,Y) —e) d(e,C.rec e)
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On the (non-)confluence

Non-linear patterns

C 2 rec—8—X—(dY,Y)—e)dX,SrecX)
A 2 red -8 —CrecS'.rec
A.rec A.rec
— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)
5 €
and

Crece— (d(Y,Y) —e) d(e,C.rec e)

and e and C.rec e have no common reduction (by induction on the supposed
length of a reduction from C.rec e to e).
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On the (non-)confluence

Non-linear patterns

C 2 rec—8—X—(dY,Y)—e)dX,SrecX)
A 2 red -8 —CrecS'.rec
A.rec A.rec
— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)
5 €
and

Crece— (d(Y,Y) —e) d(e,C.rec e)

and e and C.rec e have no common reduction (by induction on the supposed
length of a reduction from C.rec e to e).

Rigid Pattern Condition (RPC) [van Oostrom 90]
PE{T € NF(pod) | T is “linear” with no “active” variables}
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Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
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Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
% K|T-T|KT|T,T
O == V|wrong| 0,0
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Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
V w= K| T -T|KT|T,T
O == V]wrong| 0,0

e The special output wrong represents the result obtained by a computation
involving a “matching equation failure”
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Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
V w= K| T -T|KT|T,T
O == V]wrong| 0,0

e The special output wrong represents the result obtained by a computation
involving a “matching equation failure”

e The semantics is defined via a judgment of the shape 7 || O

75— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus



Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
V w= K| T -T|KT|T,T
O == V]wrong| 0,0

e The special output wrong represents the result obtained by a computation
involving a “matching equation failure”

e The semantics is defined via a judgment of the shape 7 || O

e The big-step is deterministic, and immediately suggests how to build an
interpreter for the calculus;
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Big-step Natural Semantics |

VIR, (Red—Val)
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Big-step Natural Semantics |

VIR, (Red—Val)

T TL—-17, L<hT|0
71O

(Red—p1)
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Big-step Natural Semantics |

VIR, (Red—Val)

T TL—-17, L<hT|0
71O

(Red—p1)

L7377y T30, 1| O
7’17'2U’01702

(Red—9)
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Big-step Natural Semantics ||

do.o(T1) =7, o(73) 1 O
T <D0

(Red—al)
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Big-step Natural Semantics ||

Jdo.o(Th) =7, o(T3)| O
T <D0

(Red—al)

fo. o(717) = 75
T, < T,|T; | wrong

(Red—ag)
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Big-step Natural Semantics ||

Jdo.o(Th) =7, o(T3)| O
T <D0

(Red—al)

fo. o(717) = 75
T, < T,|T; | wrong

(Red—ag)

7, || wrong
T, Ty | wrong ¢

—p2)
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p-ample: Two Natural Deductions

Take the term (f(X) — (3 — 3)X) f(3).
o=1{3/X) (333103
LX) < FB3)B = 3)X 3
(f(X) = (3—=3)X) f(3) |3

with *x = (f()() —> (3 —> 3).)() U (f(.)() —> (3 —> 3).)()
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p-ample: Two Natural Deductions

Take the term (f(X) — (3 — 3)X) f(4)
Jo. 0(3) =4
oc={4/X} (3 —3)4 | wrong
*  [f(X)< f(4)](3—3)X | wrong
(f(&X) = (3 = 3)&) f(4) I wrong

with *x = (f()() —> (3 —> 3).)() U (f(.)() —> (3 —> 3).)()
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The Rationale of Optimistic and Pessimistic Machines

Optimistic machine tracks the fact that one computation goes wrong.

(3 -+ 3,4 —+4)4 ] wrong, 4
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The Rationale of Optimistic and Pessimistic Machines

Optimistic machine tracks the fact that one computation goes wrong.

(3 -+ 3,4 —+4)4 ] wrong, 4

e Pessimistic machine “kills” the computation once a wrong value is produced

(3—»3,4—»21)4Uwrong
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The Rationale of Optimistic and Pessimistic Machines

Optimistic machine tracks the fact that one computation goes wrong.

(3 -+ 3,4 —+4)4 ] wrong, 4

e Pessimistic machine “kills” the computation once a wrong value is produced

(3—»3,4—»21)4Uwrong

e Optimistic machine (at least one computation does not go wrong), vs.
Pessimistic machine (the machine stops if at least one wrong occurs).
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Why a new calculus?

Rewriting is nice, but

e the rewrite relation or the rewriting logic are difficult to control

e non-reducibility is impossible to express
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Why a new calculus?

Rewriting is nice, but

e the rewrite relation or the rewriting logic are difficult to control

e non-reducibility is impossible to express

Lambda-calculus is great, but

e lacks of discrimination capabilities

e difficult to control
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,
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Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus



A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,
e rules are first class object

e application is explicit

e decision of redex reduction is explicit
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object
e application is explicit
e decision of redex reduction is explicit

e matching is a main explicit parameter
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit
e matching is a main explicit parameter

e results are first class
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit
e matching is a main explicit parameter

e results are first class

This allows for advanced calculi,
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit

e matching is a main explicit parameter

e results are first class

This allows for advanced calculi,

e with explicit constraints (and substitutions),
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A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit
e matching is a main explicit parameter

e results are first class

This allows for advanced calculi,

e with explicit constraints (and substitutions),

e that can dissociate binding from matching when abstracting
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Comparing the untyped
rewriting calculus to other
ormalisms



Target formalisms

[l Rewriting

1 A-calculus

[0 Higher-order term rewriting (CRS)

[0 The Lambda Calculus of Objects A\Obj

[I The Object Calculus ¢Obj
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Compiling the \-calculus into the p-calculus

1. p(X) =X
2. p(AX.M) = X — (M)
3. (M N) = (M) ¢(N)

Theorem: If M —p3 N, then (M) 5 (V).
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Compiling the \-calculus into the p-calculus

1. p(X) =X
2. p(AX.M) = X — (M)
3. (M N) = (M) ¢(N)

Theorem: If M —p3 N, then (M) 5 (V).

Example: for Turing's fixpoint combinator [Turing37]
Oy = (Ax A)) where A\ = Azxy.y(xzy)
we have p(Ay) =2 — (y — y (z = y)) and thus, to the A-reduction
O\ G —3 G(O) G)

corresponds the following reduction in the rewriting calculus

OGE(z—-(y—»yzzy)) AG—msly—y(AAY) G—sG(AAG)
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Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:
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Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:

The rewrite relation :
t —pt

I.e. the smallest relation containing the rewrite rules and stable by context et
substitution.
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Rewriting: The relation, the logic and the calculus

Given a set R of labeled rewrite rules ([¢;] I; — r;), we can define:
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Rewriting: The relation, the logic and the calculus

Given a set R of labeled rewrite rules ([¢;] I; — r;), we can define:

The rewriting logic [José Meseguer, TCS51992]:

REt=1
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Rewriting: The relation, the logic and the calculus

Given a set R of labeled rewrite rules ([¢;] I; — r;), we can define:

The rewriting logic [José Meseguer, TCS51992]:

REt=1

Formulas are sequents of the form
Tt =1

where 7 is a proof term, built on FU L U {; } recording the proof of the sequent.
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Rewriting: The relation, the logic and the calculus

R EF m:t=1

if m:¢ = t' can be obtained by finite application of the following rules:

Reflexivity For any t € T (F):

t :t=>1
Transitivity
T U1 = 19 To 19 = 13
T, 11 = 13
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Congruence For any f € F with arity(f) = n:

™ o t=>t ... w, it =t

n

flry, o ooomn) 2 f(t, . ) = f( ﬁ,...,t,’n)

Replacement For any ¢ : [(zy1,...,2,) = r(x1,...,2,) € R,

™ o th=t ... w, ity =t

n

E(?Tl,...,ﬂ'n) Zl(tl,...,tn) :>7“(t/1,...,t,’n)
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Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:
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Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:

The rewriting calculus :

(Imim(R) t) o t
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Going from rewrite rule to rewriting system:

N——"

r,y) — I

x,b) — b

—N—
~

90— ESSLLI-2004, Nancy

For the rewriting reduction

{f(fﬁ,y)%fﬂ}
e
—R b

|

b = b

The rewriting calculus

Non Determinism

Comparing to rewriting



Going from rewrite rule to rewriting system:
In the p-calculus

f(X,)Y)— X f(X,b) —b
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Going from rewrite rule to rewriting system:
In the p-calculus

f(X,)Y) — X, f(X,b) —b
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Going from rewrite rule to rewriting system:
In the p-calculus

FIX,Y) = X, f(X,b)—b fla,b)
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Going from rewrite rule to rewriting system:
In the p-calculus

(FXY) =X, f(XB)=b)  flab)
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Going from rewrite rule to rewriting system:
In the p-calculus

(FXY) =X, f(XB)=b)  flab)

U (f(X,Y) = X) fla,0), (f(X,b) —b) f(a,b)
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Going from rewrite rule to rewriting system:
In the p-calculus

(f(X, V) X,  f(X,b) - b) f(a,b)
0 (f(X,Y) = X) f(a,b), (f(X,b) —=b) f(a,b)

0 (a,b)
Encoding Rewriting
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Encoding Rewriting

Starting from the proof term, a corresponding p-term is obtained:

Theorem: If T 7 15, then 3 T’z such that T’z T’ 5 15.
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Encoding Rewriting

Starting from the proof term, a corresponding p-term is obtained:

Theorem: If T 7 15, then 3 T’z such that T’z T’ 5 15.

Example:
Given R={(1:a=0,02:c=d,03: f(x,h(y)) = f(y,h(x))} we have:

3(g(£1),£2) : f(g(a), h(c)) = f(d, h(g(b)))

and in rewriting calculus

(f (@, h(y)) = f((c = d) y,h((g(2) = (a = D) 2) x)))) f(g9(a), h(c)) s f(d, h(g(b)))

Staring from a given system of rewrite rules reduction strategies can be encoded

(using p-.)
Encoding Rewriting
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Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.
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Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.
App([a]Z(x), 2) = Z(2) (Aa.t)u =g t{a/u)
App(a]f(2). a) (a.f) a
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Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.

App([2]Z(x), 2') = 2(2") (a.t)u =g te/u)
App([z]f(z),a) (Az.f) a
Reduction : ol —cRrs R
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Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.

App([a]Z(x), Z') = 2(2") (a.t)u =g te/u)
App([z]f(z),a) (Az.f) a
Reduction : ol —cRrs R

oc={(Z, \y.fy),(Z',a)}
oL = o(App(|x]Z(x), Z")) = App([z](\y-fy)(x),a) | s= App(|z]f(z),a)
ocR=0(Z(Z") = (M\y.fy)(a) lg= f(a)
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Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.

App([a]Z(x), Z') = 2(2") (a.t)u =g te/u)
App([z]f(z),a) (Az.f) a
Reduction : ol —cRrs R

o ={(Z,\y.fy),(Z',a)}
oL = o(App([z]Z(x ) Z')) = App([z](Ny.fy)(z), a) |g= App(|z]f(x), a)
ocR=0(Z(Z") = (\y.fy)(a) |s= f(a)
App([z]f(x),a) —crs fla) (Az.f) a —p f{z/a}

N—"
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Translation of CRS in the p-calculus
e Metaterms :
2] =
Lt t)] = f([E]s - [En])
[[z]t] = = — [t]

]
[Z(t1, .. tn)] = Z [ta] ... [tn]

Example
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Translation of CRS in the p-calculus
e Metaterms :
2] =
[/t t)] = ([t - [En])
[[z]t] = = — [t]
|2ty stn)l = Z (6] - (2]

e Rewriting rules : [L = R] = [L] — [R]

e Assignment : [{...,(Z;,&),..- =1 ..,Z/[&], ...}

e Substitute @ [Azy...z,.u] = 1= (x2—(. .. (2, — [u])...))

Example
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Representation of Higher-order term rewriting (CRS)
e Definition of the pq-calculus (HO matching theory)

e Translation of CRS-components into RHO-terms

e Correction and completeness of the translation

Theorem: If T} —px 15 ... —xr 1T}, then 3 U,, ... U; such that every
correspondent RHO-derivation terminates and converges to 1),

Un(... (U T1)) : . T,
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p-calculus and records

Record = structure composed of rewriting rules, i.e.:

(Tt 2 Ty,...,T, (ne Nat)
m; =Ty €T = (m; — T)'€’

|| >

lcx =0, cy = 0] (cx — 0,cy — 0)
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p-calculus and records

Record = structure composed of rewriting rules, i.e.:

(Tt 2 Ty,...,T, (ne Nat)
m; =Ty €T = (m; — T)'€’

|| >

lcx =0, cy = 0] (cx — 0,cy — 0)

Record selection = the application of the record to the label, 7.e. T71.1T5 as 17 15.

(cx = 0,cy = 0) cx 5 (cx —0) cx,(cy = 0) cx
— 0, [cy < cz]0
=1 (0,stk) =1 0 (T.on) .. . the matching theory
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p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!
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p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!

Self-application = the application of an object to the object itself, 7.e.

|| >

11.15 1y 15 T
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p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!

Self-application = the application of an object to the object itself, 7.e.

|| >

11.15 1y 15 T

Ex: T2a =S8 —=b. Then: T.a2T aT 5 (S—b)T s b

97— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi



p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!

Self-application = the application of an object to the object itself, 7.e.

|| >

11.15 1y 15 T

Ex: T2a =S8 —=b. Then: T.a2T aT 5 (S—b)T s b

Ex T2w — S — S.w. Then: T.w = (S = Sw) T s Tw e
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A “ping-pong”’ object
Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:
T'.ping 2 T ping T
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A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)
Then:
T'.ping 2 7 ping T
—ps  ((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
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A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)
Then:
T'.ping 2 7 ping T
—ps  ((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
—s (S — S.pong),stk) T
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A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)
Then:
T'.ping 2 7 ping T
—ps  ((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
—s (S — S.pong),stk) T
—s (S — S.pong) T, stk T
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A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:

98— ESSLLI-2004, Nancy

T'.ping

o
P
o

T ping T

((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
((S — S.pong),stk) T

(S — S.pong) T,stk T

(S — S.pong) T, stk

The rewriting calculus

Comparing to object calculi



A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:
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T'.ping

o

o

)

)
=T

T ping T

((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
((S — S.pong),stk) T

(S — S.pong) T,stk T

(S — S.pong) T, stk

(S — Spong) T (Teeny)
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A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:

98— ESSLLI-2004, Nancy

T'.ping

T ping T

((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
((S — S.pong),stk) T

(S — S.pong) T,stk T

(S — S.pong) T, stk

(S — Spong) T (Toon)
T.pong

T.ping

The rewriting calculus

Comparing to object calculi



Functional object update

Update (a.m :=b) 2 (a,m — b)
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Functional object update

Update (a.m :=b) 2 (a,m — b)

Point val — S — v(1,1),

get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

99— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi



Functional object update

Update (a.m :=b) 2 (a,m — b)

|| >

Point val — S — v(1,1),

get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

Then:

Point.get s v(1,1)
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Functional object update

Update (a.m :=b) 2 (a,m — b)

Point

val — S — v(1,1),
get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

Then:

Point.get s v(1,1)
Point.set(v(2,2)) s Point, (val - S" — v(2,2))
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Functional object update

Update (a.m :=b) 2 (a,m — b)

Point

val — S — v(1,1),
get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

Then:

Point.get s v(1,1)
Point.set(v(2,2)) s Point, (val - S" — v(2,2))
Point.set(v(2,2)).get s v(1,1),0(2,2)
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Imperative object update

Kll,, rule:

|| >

kill,, (m — X,Y) —»Y (in Tcony)
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Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update  (a.m :=b) 2 (kill,,(a), m — b)
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Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update  (a.m :=b) 2 (kill,,(a), m — b)

Then:

Pointr.get s v(1,1)

100- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi



Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update  (a.m :=b) 2 (kill,,(a), m — b)

Then:

Pointr.get s v(1,1)
Pointr.set(v(2,2)) s val = S — 0(2,2),get — ... set — ...
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Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update  (a.m :=b) 2 (kill,,(a), m — b)

Then:

Pointr.get s v(1,1)
Pointr.set(v(2,2)) s val = S — 0(2,2),get — ... set — ...
Pointr.set(v(2,2)).get s v(2,2)

The Object Calculus cObj
The Lambda Calculus of Objects A\Obj
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An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n
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An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n

—s (ti,n— 8 — 1) .n

to
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An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n

—s (ti,n— 8 — 1) .n

to

é tgntQ
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An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n
—s (ti,n— 8 — 1) .n

~~

to

é tgntQ

—w  ((add, — ...) n,(n = S"— 1) n) ty
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An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(t1.add,).n
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An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(t1.add,).n
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(ti,n = 8" —1).n

~~
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stk, (S/ —> 1) to
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An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(t1.add,).n
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(ti,n = 8" —1).n

~~

t2
t2 n t2

((add,, —

stk, (S/ —> 1) to

(S/ —> 1) t2
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(Tcon)

) n,(n—-8 —=1)n)ty
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Inheritance in the p-calculus
(Abadi & Cardelli encoding of classes-as-objects)

PClass 2 new — S — (val — S’ — (S.preval) S,
get — S" — (S.preget) S’,
set — S" — (S.preset) S’),
preval — S — S — v(1,1),
preget — S — S’ — S"val,
preset - S — S — v(X,Y) — (S wal := 5" - v(X,Y))
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Inheritance in the p-calculus

(Abadi & Cardelli encoding of classes-as-objects)

|| >

PClass

Then:
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new — S — (val — S" — (S.preval) S’,
get — S" — (S.preget) S’,
set — S" — (S.preset) S’),

preval — S — S — v(1,1),

preget — S — S’ — S val,

preset - S — S — v(X,Y) — (5" val :

PClass.new s Point

The rewriting calculus

— 5" = u(X,Y))
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The Para object: labels as first-class entities
Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.
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The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £  Para (par(ten)) Para
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The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £  Para (par(ten)) Para
—s  ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
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The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £  Para (par(ten)) Para
—s  ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—»  Stk, (S — S.ten) Para
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The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £  Para (par(ten)) Para
—s  ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—»  Stk, (S — S.ten) Para
=r (S — S.ten) Para (T o))
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The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £  Para (par(ten)) Para
—s  ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—»  Stk, (S — S.ten) Para
=r (S — S.ten) Para (T o))

D Para.ten
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The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £  Para (par(ten)) Para
—s  ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—»  Stk, (S — S.ten) Para
=r (S — S.ten) Para (T o))
—s  Para.ten

I—»pag 10
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The object Daemon: methods as first-class entities

Daemon 2 set — S — X —» (X,set = 85" =Y — (Y, 5))
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The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

2 Daemon set Daemon (x — S — 3)
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The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

2 Daemon set Daemon (x — S — 3)

. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)
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The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

£ Daemon set Daemon (x — S — 3)
. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)
s (X — (X, set = S" =Y — (V,5"))) (x - 5 — 3)
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The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

£ Daemon set Daemon (x — S — 3)
. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)
s (X — (X, set = S" =Y — (V,5"))) (x - 5 — 3)
s =S = 3,5t >S5 Y - (V,5)

obj
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The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

£ Daemon set Daemon (x — S — 3)
. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)
s (X — (X, set = S" =Y — (V,5"))) (x - 5 — 3)
s =S = 3,5t >S5 Y - (V,5)

obj

obj.set(y =S —4) 5 (y—> 95 -4, -5 —+3,set -5 =Y — (Y,5))
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The Object Calculus c<Obj

Abstract syntax

a,b = X | [m;=<(X)b]* | am | am :=¢(X)b
Small-step semantics

Let a = [my; = ¢(X)b;]*€!

(Select) am; ~ {X/a}b, (el

(Update) a.m;:=¢(X)b ~ [m; =¢(X)b;,m; = c(X)b's\I} (€1

(Extend) am; :=¢(X)b ~ [m;=c(X)b;,m; =c(X)b]"¢! (7 €1)
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Compiling <Obj in p-calculus

[X] = ¢

a.m;] 2 [a]m,

[ i =(X)b) L] & (my — X — [b;])i€!

fom =B 2 [almi=X - [o
Theorem:

If a e Obj b, then [[CL]] I_»@Tg(’)bj [[b]]

Example with object update
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The new syntax - contexts, etc

T = | T—T Types
A = 0|AXT| A, fir Contexts
P = X|stk| KP (variables occur only once in any P) Patterns
T = K|stk| X |P—=aAT|[PKAT|T|TT|T, T Terms
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The Type System

F)ﬁigf :F (Start)
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The Type System

FXILOXE :F (Start)

I'+"7;: I'-"75:
I'E1,75:

(Struct)
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The Type System

ol (Start)

' AX:
I'+"7;: I'-"75:
rE7. T, (Struct)
I'= 7, I'="75:
1F|—T17'2: : (Appl)
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The Type System

ol (Start)

' AX:
I'+"7;: I'-"75:
rE7. T, (Struct)
I'= 7, I'="75:
1F|—T17'2: : (Appl)

I'VAFT: ['VAFT,:
I'ETy —A Ty

(Abs)
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The Type System

tioel (Start)

' AX:
I'+"7;: I'-"75:
rE7. T, (Struct)
I'= 7, I'="75:
1F|—T17'2: : (Appl)

CAFT 0 TVARTS:
I'ETy —A Ty

(Abs)

I'AFT;: I'="75: I'AFT5:
I'F T Ts

(Match)
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Typing properties

Well-typed matching:
If Sol(P<<7)=0,thenVX P, T'HFX:0 =TFX6:

Subject Reduction:
If I' =7, : o and 7y 5 T2, then I' = 7o -

Uniqueness:
fI'-7: andI'F7 : ), then =~ =,

Decidability:
(typechecking) 1T -7 : 7

(type inference) T+ T : } are decidable.
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Normalization failure

f: and I' = X : , wef X=X (f X)

w(fw = ([fX—-X(fX))(fw)
—  f X < fuwl(X (f X))
= w (f w)

P
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Normalization failure (cont’d)

f: and I' = X : , wef X =X (f X)
(b)
THf T'FX: I X I'FfX:
b) THf X : '-X (f X):

(Fw=fX =X (f X):
(@)
(a) = f - w
- w : - fw:
Fw (f w):
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(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)
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(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)

[1 an iteration operator that applies repeatedly a set of rewrite rules,

0w (f w)
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(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)

[1 an iteration operator that applies repeatedly a set of rewrite rules,

0w (f w)

[1 a construction grouping together a set of rewrite rules,

[ structures and objects

113- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting



(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)

[1 an iteration operator that applies repeatedly a set of rewrite rules,

0w (f w)

[1 a construction grouping together a set of rewrite rules,

[ structures and objects

[1 an operator testing if a set of rewrite rules is applicable to a term.

[1 the symbol stk
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p-calculus and objects

e Object = record with an explicit account of self, i.e.

mi = (X)) 2 (me(Xy) — ¢;)"€!
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p-calculus and objects

e Object = record with an explicit account of self, i.e.

mi = (X)) 2 (me(Xy) — ¢;)"€!

e Self-application = the application of an object to the object itself, i.e.

tita =ty tatr)
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p-calculus and objects

e Object = record with an explicit account of self, i.e.

mi = (X)) 2 (me(Xy) — ¢;)"€!

e Self-application = the application of an object to the object itself, i.e.

tita =ty tatr)

e Ex: t£a(S) - b. Then: t.a2t a(t) —, [a(S) < a(t)]b 4 b
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Typed objects

e An object has type:

S : = meth :
= meth(S) : (Appl) = Toneth
= meth(S) = Tmeth

(Abst)
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Typed objects

e An object has type:

S : = meth :
= meth(S) : (Appl) =T oth
= meth(S) = Tmeth

(Abst)

o obj.meth 2 obj meth(obj) can be typed as follows:

~ meth : ~ obj :
= obj : - meth(obj) :
- obj meth(obj) :
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Detecting matching failures: the symbol stk

1. The relation P [Z A detects (some) definitive matching failures:

f Z g
f(An) & B if (B=g(Bm),f#g) V (B=f(Bn),3i,A; £ B;)
P 7 A ifA=([Q< A1JAsAQZ ALV P IZ Ay)
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Detecting matching failures: the symbol stk

1. The relation P [Z A detects (some) definitive matching failures:

f Z g
f(An) & B if (B=g(Bm),f#g) V (B=f(Bn),3i,A; £ B;)
P 7 A ifA=([Q< A1JAsAQZ ALV P IZ Ay)

2. The relation —y treats matching failures uniformly:

P < A|B  — stk it PIZA
Stk, A —2tk A
A, Stk —&tk A

stk A —y stk

Theory of Stuck Ts Encoding Rewriting
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Encoding rewriting - Addition over Peano integers

A S—Dadd( ,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add( ,y))
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Encoding rewriting - Addition over Peano integers

A S—Dadd( ,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add( ,y))

(plus plus) add( ", M)

—s | << VM, [ <K [(M+1) - [ < UJ(M+N), [suc m < ]...
—s  stk, stk -+ [0 K UJ[(M+N), stk...
stk M‘|‘N
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Encoding rewriting - Addition over Peano integers

A S—Da,dd( ,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add( ,y))

(plus plus) add( ", M)

—s | << VM, [ <K [(M+1) -+ [0 K J(M+N), [suc » < ]...
—s  stk, stk -+ [0 K UJ[(M+N), stk...
stk M+ N

Fill in the blanks with your favorite rewrite system...

S — :
S — (S 5)

func =
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Encoding rewriting - Addition over Peano integers

A S—Da,dd( ,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add( ,y))

(plus plus) add( ", M)

—s | << VM, [ <K [(M+1) -+ [0 K J(M+N), [suc » < ]...
—s  stk, stk -+ [0 K UJ[(M+N), stk...
stk M+ N

Fill in the blanks with your favorite rewrite system...

fune 2 [ S len([]) = 0
S — len(Cons(z,1)) — suc((S S) len(l))
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Encoding rewriting - Addition over Peano integers

A S—Dadd( ,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add( ,y))

(plus plus) add( ", M)

—s | << VM, [ <K [(M+1) - [ < UJ(M+N), [suc m < ]...
—s  stk, stk -+ [0 K UJ[(M+N), stk...
stk M‘|‘N

Fill in the blanks with your favorite rewrite system... provided it is convergent and
ground reducible if you want completeness.

fune 2 [ S len([]) = 0
S — len(Cons(z,1)) — suc((S S) len(l))
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Encoding rewriting - Addition over Peano integers

A S—Dadd( ,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add( ,y))

(plus plus) add( ", M)

—s | << VM, [ <K [(M+1) - [ < UJ(M+N), [suc m < ]...
—s  stk, stk -+ [0 K UJ[(M+N), stk...
stk M‘|‘N

Fill in the blanks with your favorite rewrite system... provided it is convergent and
ground reducible if you want completeness.

fune 2 [ S len([]) = 0
S — len(Cons(z,1)) — suc((S S) len(l))
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Encoding rewriting in the p-calculus

1. The following operator selects the first applicable rule of a set:

first(A, Ag, ..., A)) 2

X — ((stk = A, X, I) (... (stk > Ay X, 1) (A X)))
first(Ar, A, ..., A)) B s Aji1 B if Vi < j, A; B g stk

and Aj_|_1 B /L»pag stk
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Encoding rewriting in the p-calculus

1. The following operator selects the first applicable rule of a set:

first(A, Ag, ..., A)) 2

X — ((stk = A, X, I) (... (stk = Ay X, I) (A1X)))
first(A1, Ao, ..., AN) B s Ajp B if Vi < g, A; Brogsstk and Aj 1 B fop stk

2. The Term Rewrite System R = { } with signature {a;} is encoded by:
— S (rec 9)

Y

R ~ (recS) — first

.Y’—D S (Rec S) (v S(rec S) X), |’

)

— S (rec S) -,
(Rec S) — first [ -+,
I
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Example - A simple calculator

(addOY—»Y, \

add (suc X)Y — S.rec (suc (add X Y)),
mult 0Y — 0,

calc = rec(S) — first | mult (suc X)Y — S.rec (add (mult X Y) X),
add X Y — S.Rec (add (S.rec X) (S.recY)),

mult X' Y — S.Rec (mult (S.rec X) (S.recY)),
\ suc X — S.Rec (suc (S.rec X))

(addOY—»Y, \

add (suc X)Y — S.rec (suc (add X Y)),
Rec(S) — first | mult0Y — O,

mult (suc X)Y — S.rec (add (mult X Y) X),

| ¥y /

Computing (3 +5) x 4

O cale.rec (mult (add 3 5) 4) s

2.
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Example - Computing the length of a list

. len nil — 0,
length = recS — first | len (cons X L) — S.rec (suc (len L)) , :
suc X — S.Rec suc (S.rec X)
len nil — 0
Rec S — first | len (cons X L) — S.rec (suc (len L)),
Y - Y
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Logical inconsistency

e As is, the Curry-Howard isomorphism is not valid:

' AFT;: I'AFT:
I'=71 —aTs:

T Ao T,AF
T F

(Abs)
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Logical inconsistency

e As is, the Curry-Howard isomorphism is not valid:

' AFT;: I'AFT:
I'=71 —aTs:

T Ao T,AF
T F

(Abs)

- (hJ_—Doz—voc(X_L) > XL) :
e Thus, for instance, - (h-727%(X+) - X+) (Y - Y9)
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Logical inconsistency

e As is, the Curry-Howard isomorphism is not valid:

' AFT;: I'AFT:
I'=71 —aTs:

T Ao T,AF
T F

(Abs)

- (hJ_—Doz—voc(X_L) > XL) :
e Thus, for instance, - (h-727%(X+) - X+) (Y - Y9)

e How to fix it ?

P,XZQOZFB
I['-A— B:

(Abs) , FV(A)={X""}

1
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Dependent type discipline

I'' A\ FT1;: I'AFT5:
'E71: A =75

(Abs)

I'-7;: I'E75:
I'-77 75 :

(Appl)

I'AFET,
CE(7Ty:A)—=Ty: (171 A)

(Abs)

I'+"7;: I'E75: F,Al—’]'ll:a(A 3
T-T7 Tz A bp
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POPL-03



P TS

Motivations and Contributions

Small “A-Digression”
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From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

(AX.X) 3
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From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3
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From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:
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From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(AE(X),8(Y)).(X,Y))(3,4)
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From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(A (sar(X), trl(X)) .headof (X)) (sqr(wood),trl(wood))

VO VO
pattern argument
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From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(A (sar(X), trl(X)) .headof (X)) (sqr(wood),trl(wood))

VO VO
pattern argument

e Rewriting-calculus builds upon generalised abstraction:

A(OP.Q).M) N_

pattern arg
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From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(A (sar(X), trl(X)) .headof (X)) (sqr(wood),trl(wood))

VO VO
pattern argument

e Rewriting-calculus builds upon generalised abstraction:

A(OX.Y).Y 3)(\Z.Z)

pattern arg

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems



PAT TERNS

We Want More Patterns!

Pattern Power!
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The Uncle Pat

FOR U S.ARMY

NEAREST RECRUITING STATION
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MATCHING

We Want More Matching!

Matching Power!
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The Lady Match
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P TS: Notational Convention

Capital letters, like A, B,C, ... range over general terms (metavariables)
Capital letters, like X,Y, Z, ... range over variables

Small letter, like a,b, ..., f,... and strings like car, cons,nil,int, ... range
over constants

The application of a constant function, say f, to a term A will be usually
denoted by f(A), following the algebraic “folklore”

We can “curryfy” in order to denote a function taking multiple arguments, e.g.
f(Al"'An)éfAl A

Fact: Mixing term rewriting and lambda calculus is a longstanding “shambles”:
many proposals, many solutions, many problems, ...
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P TS: Tricky !

e Quiz: ... the below term can have free variables 7

Acons(T X nil(T)) .cons(T X cons(T X nil(T))
— ‘

pattern
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P TS: Tricky !

e Quiz: ... the below term can have free variables 7

Acons(T X nil(T)) .cons(T X cons(T X nil(T))
— ‘

pattern

e yes, and we can even abstract over the variable T’

AT Acons(T' X nal(T)).cons(T X cons(T' X nil('T)))
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P TS: Tricky !

e ... we will explain why we cannot reduce

(Acons(T X nil(T)) .cons(T" X cons(T X nil(1))))

pattern

cons(int 3 nil(int))
argar?lent

132— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems



P TS: Tricky !

e ... we will explain why we cannot reduce

(Acons(T X nil(T)) .cons(T" X cons(T X nil(1))))

pattern

cons(int 3 nil(int))
argar?lent

e ... but we can reduce

A Jt;l,.Agans(T 2{ nil(1")) .cons(1" X cons(1" X nil(1)))
pa patt2

ant, cons(int 3 nil(int))
argl arg2
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TYPES

We Need to Plug Types!
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Thanks to TAL’s Group (Cornell)
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Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..
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Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus
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Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)
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Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)

e We develop the basic theory of the resulting framework which we call

Pure Pattern Type Systems
(P'TS)
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Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)

e We develop the basic theory of the resulting framework which we call

Pure Pattern Type Systems
(P'TS)

e This is not as straightforward as one may imagine
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Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)

e We develop the basic theory of the resulting framework which we call

Pure Pattern Type Systems
(P'TS)

e This is not as straightforward as one may imagine Z—)
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P TS

Free Unrestricted Patterns

Plaetora of Serious Problems
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P TS: Some Problems

e Confluence can fails for bad patterns

(\ ();;{) X)(\Z.Z) a) s
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P TS: Some Problems

e Confluence can fails for bad patterns

(\ @bﬁg X)((\Z.Z) a)(\7.2)
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P TS: Some Problems

e Confluence can fails for bad patterns

(\ gbﬁg X)(\Z.Z) a) ) (x Y).X) a
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P TS: Some Problems

e Confluence can fails for bad patterns

(A @bﬁg X)(\Z.Z) a) ) (x Y).X) a

e Subject Reduction can fails for bad patterns

- OVXTT YD) 2T YD) (XET YR
S——— ——
bad patt badarg
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P TS: Some Problems

e Confluence can fails for bad patterns

(\ gbﬁg X)(\Z.Z) a) ) (x Y).X) a

e Subject Reduction can fails for bad patterns

/2T Yo 2T
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P TS: Some Problems

e Confluence can fails for bad patterns

(\ gbﬁg X)(\Z.Z) a) ) (x Y).X) a

e Subject Reduction can fails for bad patterns

/2T Yo 2T

e Shapes of good patterns must be synchronized with a sound static type system!
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A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

(A\P.A) B
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A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

(A\P.A) B

e Good Patterns are not occurrence of “active” variables, i.e. the bad pattern

(X A)
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A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

e Good Patterns are not occurrence of “active” variables, i.e. the bad pattern
e Good Patterns are linear, i.e. variables occurs only once, 7.e. the bad pattern

£(X, X)
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A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

e Good Patterns are not occurrence of “active” variables, i.e. the bad pattern
e Good Patterns are linear, i.e. variables occurs only once, 7.e. the bad pattern

£(X, X)

e All those recipes can be formalized, enforced by the syntax, checked at run time
or statically, or by any reasonable mathematical technique....
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The main contribution of this (ongoing) work are ...

e to provide adequate notions of patterns, substitutions and syntactic matching
in a typed setting.
We introduce delayed matching constraint, and the possibility for patterns in
abstractions to evolve (by reduction or substitution) during execution
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The main contribution of this (ongoing) work are ...

e to provide adequate notions of patterns, substitutions and syntactic matching
in a typed setting.
We introduce delayed matching constraint, and the possibility for patterns in
abstractions to evolve (by reduction or substitution) during execution

e to propose an extension of PTSs supporting abstraction over patterns, and
enjoying

confluence

subject reduction

conservativity over PTSs
consistency for normalizing P T Ss
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The main contribution of this (ongoing) work are ...

e to provide adequate notions of patterns, substitutions and syntactic matching
in a typed setting.
We introduce delayed matching constraint, and the possibility for patterns in
abstractions to evolve (by reduction or substitution) during execution

e to propose an extension of PTSs supporting abstraction over patterns, and
enjoying

confluence

subject reduction

conservativity over PTSs
consistency for normalizing P T Ss

e Strong normalization for all P T S is an open problem . . . but it is ok for simple
P T S-types (see Benjamin Wack SN-paper) and it “seems” ok for the simplest
dependent-type discipline (~ Pattern Logical Framework)
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P TS

The Syntax
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P TS

Its time to be uniform!

M.B~ A — B
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The Typed Syntax

[ .= 0| X:A|L, f:A
A:= X|f|P-pAB|AA||[P<aB|C|A,B
IIP:A.B
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The Typed Syntax

[ .= 0| X:A|L, f:A
A:= X|f|P+-AB|AA||[P<aB|C|A,B
IIP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)
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The Typed Syntax

[ .= 0| X:A|L, f:A
A:= X|f|P+-arB|AA||[P<aB|C|AB
IIP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)
2. Term [A <A B]C is a delayed matching constraint
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The Typed Syntax

[ .= 0| X:A|L, f:A
A:= X|f|P-arB|AA||[P<aB|C|A B

ITP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)
2. Term [A <A B]C is a delayed matching constraint
3. Term of the form A, B is called a structure
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The Typed Syntax

[ .= 0| X:A|L, f:A
A:= X|f|P-arB|AA||[P<aB|C|A B
IIP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)
2. Term [A <A B]C is a delayed matching constraint

3. Term of the form A, B is called a structure

4. Term of the form IIP:A.B is called a product type
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Untyped Rho vs. Typed P TS

Rh

T = VIK|\P-T|TT | PKT|T|T,1

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|vPCT|TT||P<cT|T|T,T
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Untyped Rho vs. Typed P TS

Rh

T = VIK|\P-T|TT|\PKT|T|T,1

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|/PCT|TT||P<cT|T|T,T
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Untyped Rho vs. Typed P TS

Rh

T = VIK|\P-T|TT|\PKT|T|T,1

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|/PCT|TT||P<cT|T|T,T
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Untyped Rho vs. Typed P TS

Rh
T =VIK|P-T|TT||PKT|T|7T,T

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|/PCT|TT||P<cT|T|7T,T
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P TS

Small-step Semantics
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Reduction@glance

(P —.p B)C
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Reduction@glance

(P —> A B)C — [P <A C]B
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Reduction@glance

(P —> A B)C — [P <A C]B

—, Bo
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Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C
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Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C

(P —.n B)C
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Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C

(P — A B)C — [P <A C]B
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Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C

(P — A B)C — [P <A C]B
STOP!
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Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C
(P — A B)C — [P <A C]B

STOP!
if Ao.Po=C
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The Small-step Reduction Semantics

(p) (P-aAaB)C +~, [P<aC].B
(o) [P<KaCl.B BU(P«@AC)
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The Small-step Reduction Semantics

(p) (P-aB)C +~—, |[P<LaC|.B

(0) [P<aCl.B =y Bopgag

e (p): applying P —a B to C reduces to the delayed matching constraint
P <A C|.B
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The Small-step Reduction Semantics

(p) (P-aB)C +~—, |[P<LaC|.B

(0) [P<aCl.B BU(P«@AC)

e (p): applying P —a B to C reduces to the delayed matching constraint
P <A C|.B

e (0): run successfully Alg(P«@C), and applying the result 0 to the term B
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The Small-step Reduction Semantics

(p) (P-aB)C +~—, |[P<LaC|.B

(0) [P<aCl.B BU(P«@AC)

e (p): applying P —a B to C reduces to the delayed matching constraint
P <A C|.B

e (0): run successfully Alg(P«ﬁC), and applying the result 0 to the term B

e (§): deals with the distributivity of the application on the structures built with
the “," constructor One-Many-Congruence-As-Usual
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P TS

Galleria & Glance
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Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the )\-abstraction in PTSs. The rationale is:

X —(X.0) A~ AX:0.A
Y
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Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the )\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
ﬂ—/
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Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the )\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
T/

e Instead of simple variables we abstract over sophisticated patterns

e The free variables of A (bound in B) are declared in the context A, i.e.

FVar(A —a B) = (FVar(A)UFVar(B)UFVar(A))\Dom(A)
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Galleria |I: The Pattern Abstraction A —, B

e Generalisation of the )\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
T/

e Instead of simple variables we abstract over sophisticated patterns

e The free variables of A (bound in B) are declared in the context A, i.e.
FVar(A —a B) = (FVar(A)UFVar(B)UFVar(A))\Dom(A)
e A discriminates on which FVar(A) will be bound in B and which not

cons(T X nil(T)) ~(X:T) cons(T X cons(T X nil(T)))
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Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the )\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
T/

e Instead of simple variables we abstract over sophisticated patterns

e The free variables of A (bound in B) are declared in the context A, i.e.
FVar(A —a B) = (FVar(A)UFVar(B)UFVar(A))\Dom(A)
e A discriminates on which FVar(A) will be bound in B and which not

cons(T X nil(T)) ~(X:T) cons(T X cons(T X nil(T)))
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Galleria 1l1: The Matching Constraint [A <A B|C

e In the term

A <a B|C

the matching equation [A <A B] is put on the stack, hence constraints and
“de facto” blocks the evaluation of

e The body C will be evaluated (in case a matching solution exists) or delayed
(in case no solution exists at this stage of the evaluation)

e |f a solution exists, the delayed matching constraint self-evaluates to Co,
otherwise the evaluation is delayed to a later stage

e The free variables of A declared in A are bound in B but not in C, i.e.

FVar([A <a B]C)2 FVar((A —a C)B)
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P TS

Matching Algorithm

Jo. Alg(P=<3A) 7

INSIDE ALGO HARD RUN EASY RUN SKIP
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Matching Systems

1. A matching system T2 A PL-«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.
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Matching Systems

1. A matching system T2 A PL-«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;
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Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

151- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems



Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

T2 A Xi=xiCi A [i<X f;
¢ 1=0...m J

1=0...n
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Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

@ T2 A Xi<XCi AN fi<X f;

1=0...n 1=0...m
(b) forall h,k=0...n, X; = X implies C, = C
(c) foralli=0...n, X; € Dom(A;) or X; & Dom(X) implies X; = C}
(d) forall i =0...n, FVar(C;) N Dom(A;) # () implies X; = C;
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Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

@ T2 A Xi<XCi AN fi<X f;

1=0...n 1=0...m
(b) forall h,k=0...n, X; = X implies C, = C
(c) foralli=0...n, X; € Dom(A;) or X; & Dom(X) implies X; = C}
(d) forall i =0...n, FVar(C;) N Dom(A;) # () implies X; = C;

4. if condition 3 is satisfied the matching system T produces the substitution
{C1/X1---C,/X,}, otherwise the matching fails
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The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)

~ Pl_«%,APQ N\ Bl'«%’ABQ
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The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)
~ Pl_«%,APQ N\ Bl'«%’ABQ

(Delay) [Pl <A Cl]Bl«E[PQ <A CQ].BQ

> Pl‘«%’APQ N\ Bl'«%’ABQ N\ Cl'«?CQ
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The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)

~ Pl_«%,APQ N\ Bl'«%’ABQ

(Delay) [P <A C1].B1=<g [Py <a Cs]. By

> Pl'«%’APQ N\ Bl'«%’ABQ N\ Cl'«?CQ

(Appl/Struct) (A1 5 B1) =<t (Ay 5 By)

~ Al'«%AQ A\ Bl'«?BQ
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The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)

~ Pl_«%’APQ N\ Bl'«%’ABQ

(Delay) [P <A C1].B1=<g [Py <a Cs]. By

> Pl'«%’APQ N\ Bl'«%’ABQ N\ 01«1;02

(Appl/Struct) (A1 5 B1) =<t (Ay 5 By)

~ Al'«%AQ A\ Bl'«%BQ

recall the reduction rule [P <g C|.B —, Bo P=OC)
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Termination of Alg

e The relation ~+ is defined as the reflexive, transitive and compatible closure of

D

o If T~ T’ with T’ a matching system in solved form then, we say that the
matching algorithm Alg (taking as input the system T) succeeds

e The matching algorithm is clearly terminating (since all rules decrease the size
of terms) and deterministic (no critical pairs), and of course, it works modulo
a-conversion and Barendregt's hygiene-convention

e Starting form a given solved matching system of the form

T2 6\ Xi«iiAi A\ aj«ijaj

...n j=0...m

the corresponding substitution {A1/X;7--- A, /X, } is exhibited.
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Less Fasy Running

?
o X —(xu) X=<KpX —(xi) X
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Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!
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Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!

?
o X —(xuy) X=X —xy) ¥
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Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!

o X — (X 1) X«%X — (X 1) Y ~ X«}X A X'«}Y KO!!
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Less Fasy Running

o X — (X 1) X«(‘SX — (X 1) X ~ X«}X OKl!
o X — (X 1) X«(‘SX — (X 1) Y ~ X«}X A X'«}Y KO!!
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Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!
o X — (X 1) X«(‘SX — (X 1) Y ~ X«}X A X'«;Y KO!!

X=X ANf=EFAXKEX AY <3 OKI!
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Less Fasy Running

o X —(x. X«%X —>(X:) X~ X«}X OK!!
o X —xi) X=X »xi) Y ~» X< X AX<LY Ko
o X —o(x) F(XY) =y X —(x) (X 3) ~

X=X ANf=EFAXKEX AY <3 OKI!

o [f(X) <ixy FIMIX=YF(X) <(x) F(3)].X
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Less Fasy Running

o X —(x. X«%X —>(X:) X~ X«E(X OK!!
o X —xi) X=X »xi) Y ~» X< X AX<LY Ko
o X —(xu) [(XY)=y X —(xa) f(X3) ~

X=X ANf=EFAXKEX AY <3 OKI!
o [f(X) < (x:) f(Y)]X*«%/[f(X) <L (x:) f(3)].X ~

fRYAXKEEXNANX<KEX ANy FAY =<3 ok
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Two Easy Running
¢ (cons(T X nil(T)) —x4 X) cons(T 3 nil(T))
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Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T))
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Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T  OK!l with o = {3/X}
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Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T  OK!l with o = {3/X}

¢ (cons(T X nil(T)) — x4 X) cons(i 3 nil(i))
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Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T  OK!l with o = {3/X}

e (cons(T X nil(T)) —x.) X) cons(i 3 nil(i))

Solve cons(T X nil(T)) < cons(i 3 nil(i))
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Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T  OK!l with o = {3/X}

¢ (cons(T X nil(T)) — x4 X) cons(i 3 nil(i))

Solve cons(T X nil(T)) < cons(i 3 nil(i)) ~
X<«33AT<Fi  KO!
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P TS

Type System
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The Type System |

(s1,892) €)A
@ - S1 . 89

(Axioms)
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The Type System |

(s1,892) €)A
@ - S1 . 89

[+ AI" |—CfA7 BF %B . C (StTUCt)

(Axioms)
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157— ESSLLI-2004, Nancy

The Type System |

(s1,892) €)A
@ - S1 . 89

[' - AF: I—CA, BF: |_CB . C (Struct)

I'FA:s a¢& Dom(T)

(Axioms)

I'N'aw:AFa: A (Start)

The rewriting calculus

Pure Pattern Type Systems



The Type System |
(s1,892) €)A

0F s : s (Axioms)
' AI’: I—CA, BF: I_CB - C (Struct)
SRRl S stary
I'FA:B [‘?al_;cq—: ;94 | Ba Z Dom/(I) (W eak)
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The Type System |
(s1,892) €)A

0F s : s (Axioms)

' AI’: I—CA, BF: I_CB - C (Struct)
SRRl S stary
I'FA:B [‘?al_;cq—: ;94 | Ba Z Dom/(I) (W eak)
CHA:B _THC:D  BusC g,
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The Type System ||

A

B:C I'=1TA:A.C : s
- A -

A—n B -TAAC  (Ads)

-
I
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83) c R
P AFA:C T.AFB: s
' HFITA:A.B : s3

(Prod)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

I'-C: s (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IIC:A.D I''AFC:FE FI—B:E(A )
I'-AB:[C<aB|D pp

(Prod)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

I'EC: sy (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IIC:A.D I''AFC:FE FI—B:E(A )
I'-AB:[C<aB|D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

I'-C: s (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'-A:IICCAD TI'AFC:FE FI—B:E(A )
I'-AB:[C<aB|D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E FI—B:E(A I
I'-AB:[C<aB]D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'-AB:[C<aB]D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'A+FA:E T, ArC:D TFB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

INAFA:E T, AFC:D TFB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'AFA:E T, AFC:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)672
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'AFA:E T''AFC:D I'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)
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The Type System ||

I'AFB:C T FIIAA.C:s
I'A A B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'AFA:E T AFC:D T'FHFB:D
I'-[C<aBJA:[C<kaB]'E

(Prod)

(Subst)
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Fetch Your System

I'EC': s (31,82783) cR
I'AFA:C T.AF B:s

[k TTA:A.B : s5 (Prod)
System Rules
Ps (, *, *)
02 (s, %, %) | (O, %, %)
pw (%, *, *) (O,0,0)
pw (, *, *) (x,0,0) | (O0,0,0)
pLF (%, *, *) (x,0,0)
pP2 Gk, %,%) | (O, %, %) | (x,0,0)
pPw (, *, *) (x,0,0) | (O,0,0)
pPw (x,%,%) | (O,%,%) | (x,0,0) | (O0,0,0)
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P TS

Typed Examples
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Example: Simple Type Derivation

Let T 24k, f:I12:3.4, 3:i, 4:i, and A2 X:i, and ¥ 2 Z:4,

3| (ren) €R
' Z <5 X

I'AF ()\3:50).3) :113:0.i |56 A F[3<g X
VAR (A3:0.3) X - [3<y Xt THIIF(X):A [3<<@X]
FEA(X):A(N3:0.3)X : T1f(X):A.[3 < X].3 34

I'E (Af(X):A.(A3:0.3)X) f(3) : [f(X) <a fB)].[3<p X]d |12
TF (AM(X):A.(A3:0.3)X) £(3) : i

where | 1 |2[f(X) <a f(3)].[3 <p X].i=gi, and | 2 |[2T k4 : %, and
3120,AF f(X):[Z <5 X4, and | 4 |2TF £(3) : [Z <5 3].4, and
5|2T,AF X :4,and| 6 |2T,AF3:4.
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Example: Simple Type Derivation

Let T 24k, f:I12:3.4, 3:i, 4:i, and A2 X:i, and ¥ 2 Z:,

3| (ren) €R
' Z <5 X

I'AF ()\3:50).3) :113:0.i |56 A F[3<g X
VAR (A3:0.3) X - [3<y Xt THIIF(X):A [3<<@X]
FEA(X):A(N3:0.3)X : T1f(X):A.[3 < X].3 34

[EAf(X):A(A3:0.3)X) f(3) : [f(X) <a fF(I)].[3<p X]t |12
T'F OM(X):A.(0\3:0.3)X)£(3) : i

where | 1 |2[f(X) <a f(3)].[3 <p X].i=gi, and | 2 |[2T k4 : %, and
3120,AF f(X):[Z <5 X4, and | 4 |2TF £(3) : [Z <5 3].4, and
5|2T,AF X :4,and| 6 |2T,AF3:4.
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Playing with the Rho-cube: pLF

o Let I' 2k, f:IIX:(X:0).%, 31

' XabFX:1 I'Fe:x I XabEx:0O

[ TIX:(Xd).x : O
e fIIX (X)) .x I XukEX:t I'F3:9
I' - f(3) : [X < (X:4) 3]T>I< = %

o ' - IIX:(X:i).x: O can be derived thanks to the specific rule (x, O, O)
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Playing with the Rho-cube: p2

e In this system the following polymorphic identity with pattern f" can be
derived (where f denotes f* —% ):

(C’onv—‘,—Appl)
— % O Fx:0 FEx:0 ok!
EX* % I—f(YX) X'EX i+ b X ik g ;
FYXT X X VX R (YY) - X I—X*:*ml—f(YX*)—»X*:*
- AV =YYy Y - X Xk, VX B X* = f(YY) = X @ %

X, VX F X f(YY) =YY X, VX F X = f(YY) = Xt %
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Playing with the Rho-cube: p2

e In this system the following polymorphic identity with pattern f" can be
derived (where f denotes f* —% ):

(C’onv—‘,—Appl)
— % O Fx:0 FEx:0 ok!
EX* % I—f(YX) X'EX i+ b X ik g ;
FYXT X X VX R (YY) - X I—X*:*ml—f(YX*)—»X*:*
- AV =YYy Y - X Xk, VX B X* = f(YY) = X @ %

X, VX F X f(YY) =YY X, VX F X = f(YY) = Xt %

o X, Y:XF f(YX) — X : % can be derived thanks to (x, *, %)
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Playing with the Rho-cube: p2

e In this system the following polymorphic identity with pattern f" can be
derived (where f denotes f* —% ):

(C’onv—‘,—Appl)
Fx .0 Fx 0 F % ok!
- X . % I—f(YX) X*I—X*:*I—X* — ;
FYXT X X VX R (YY) - X I—X*:*ml—f(YX*)—»X*:*
- AV =YYy Y - X Xk, VX B X* = f(YY) = X @ %

X, VX F X f(YY) =YY X, VX F X = f(YY) = Xt %

o X, Y:XF f(YX) — X : % can be derived thanks to (x, *, %)

o X, Y:X F X*— f(YX') — X : % can be derived thanks to (O, *, )
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P TS

Metatheory

CONCLUSIONS
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P TS: Some Results

e Confluence The relation —s 15 confluent

e Subject Reduction. If I'-A: B, and A+ C, thenI' - C : B
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P TS: Some Results

e Confluence The relation —s 15 confluent

e Subject Reduction. If I'-A: B, and A+ C, thenI' - C : B

e Consistency. Any normalizing P T S is logically consistent, i.e.
foreverysort s€ S, Xist/A: X

e Conservativity. P T Ss are a conservative extension of P Ss:

TtppgA:B <= TIThprg Al: BT
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Open Tracks

e strong normalization, we conjecture that standard model construction
) . . <
techniques can be used to prove strong normalization of the \-cube;

e type checking/inference, we conjecture that existing algorithms for PTSs adapt
readily to P T Ss;

e it would be interesting to study P T Ss with a limited form of decidable
higher-order unification, in the style of A-Prolog;

e encoding dependent case analysis, dependent sum types (records) a la
Coquand-Pollack-Luo;

e explicit substitutions. The extension is not trivial, because of delayed matching
constraints, but the resulting formalism could serve as the core engine of a
little type-checker underneath of a powerful proof assistant;
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Challenge ... Extending the Curry-Howard Isomorphism

e The extension can be considered from the point of view of sequent calculi,
deduction modulo, and natural deduction respectively;

e From the point of view of sequent calculi, it remains to investigate how P T Ss
can be used to extend previous results on term calculi for sequent calculi, and
how their extension with matching theories can be used to provide suitable
term calculi for deduction modulo;

e From the point of view of natural deduction, P T Ss correspond to an extension
of natural deduction where parts of proof trees are discharged instead of
assumptions;

e To our best knowledge, such an extended form of natural deduction has not
been considered previously, but it seems interesting to investigate whether such
an extended natural deduction could find some applications in proof assistants,
e.g. for transforming and optimizing proofs.
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Logics and Rho a la Church

The relation with (intuitionistic) logic through the so-called Curry-Howard
isomorphism, or ‘formulae-as-types’ principle, has been profoundly studied for

La da. However, for Rho a laChurch, this relation is less clear, as demonstrated
by the authors. The principle could be adapted as follows:

Given a typed term A, if we can derive for A a type T in the typed system
Rho, with a derivation Der+, then the term A can be seen as the coding

of a logical proof, proving the formula o that can be interpreted as the
type T assigned to A.
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Curry from Church

For those systems, if Dert is a typed derivation, and (—|) is the above meant
erasing function, then by applying (—) to the “subject” of every judgment in
Dert, we obtain a valid type assignment derivation Dery with the same structure
of the typed one. Vice versa, every type assignment derivation can be viewed as
the result of an application of (—) to a typed one. In particular, the erasing
function (—|) induces an isomorphism between every typed system and the

corresponding type assignment system.

) L f ([P <a Al.B) £ [P < (A)]-(B)
1X) &y (P —a A = P —(4)
A 2oy B 2 (4) (B)

(4, B) = (4),(B)
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Logics and Rho a la Curry

For the type assignment system Rho the relation with logic is less clear even for
the corresponding type assignments for the La  ©da. The ‘formulae-as-types’
principle of Curry and Howard could be extended to the above type assignment
systems as follows:

Given an untyped term U, if we can assign a type T in the type assignment
system Rho, with a derivation Dery, then:

e Dery can be interpreted as the coding of a proof for the logic formulas
©w which corresponds to the interpretation of the type T assigned to U;

e U can be interpreted as the coding of a “logical proof schema”, whose
instances (of the schema) prove, respectively, all the logic formulas

©;'s that can be interpreted as the types 7;'s that can be assigned
toU.
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Typed and Untyped Judgments and Derivations

Dert Dery

' AT - 'y (A) : 7
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Thanks for youp attention ...

/\<<w N Pw PROPw - PREDw
59 ~)\<<p2/ PROP2/ - PREDz/
)\<<£ ‘)\<<Pg PROPw - PREDw

)\<<—c>/ - )\<<P/ PRO P/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED
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Thanks for youp attention ...

/\<<w N Pw PROPw - PREDw
)\<<2 )\<<P2/ PROP2/ - PREDz/(
)\<g ‘)\<<Pg PROPw - PREDw

>\<<—{>/ - >\<<P/ PRO P/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED
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Thanks for youp attention ...

/\<<w N Pw PROPw - PREDw
)\<<2 )\<<P2/ PROP2/ . PRED2/(
)\<g ‘)\<<Pg PROPw - PREDw

>\<<—{>/ - >\<<P/ PRO P/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED
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The Uncle Pat and the Lady Match

We Can Do !

FOR U S ARMY

NEAREST RECRUITING STATION

=P TS
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PPDP-04



IRh

Motivations
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Multiparadigm

MULTIPARADIGM.ORG

e Rewriting-based languages (like, e.g. ELAN, Maude) try to unify the logic
paradigm with the functional paradigm.
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Multiparadigm

2 Functional

= MULTIPARADIGMVI.ORG

00 Object Oriented

e Rewriting-based languages (like, e.g. ELAN, Maude) try to unify the logic
paradigm with the functional paradigm.

e Although these languages are less used in common practice than e.g.
object-oriented languages (like, e.g., Java, C#, O'Caml, . .. ), they can be
used also as (formal) common intermediate languages for implementing
compilers for rewriting-based, functional, object-oriented, logic, and others
“high-level” modern languages and meta languages.
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Main Atout: Pattern Matching.

e Pattern-matching allows to discriminate between alternatives. Once a pattern
is recognized, a pattern is associated to an action. The corresponding pattern
is thus rewritten in an appropriate instance of a new one

e Ability to handle a collection of results: pattern matching need not to be
exclusive, i.e. multiple branches can be “fired” simultaneously

e An empty collection of results represents an application failure, a singleton
represents a deterministic result, and a collection with more than one element
represents a non-deterministic choice between the elements of the collection
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Main Atout: Pattern Matching.

e Pattern-matching allows to discriminate between alternatives. Once a pattern
is recognized, a pattern is associated to an action. The corresponding pattern
is thus rewritten in an appropriate instance of a new one

e Ability to handle a collection of results: pattern matching need not to be
exclusive, i.e. multiple branches can be “fired” simultaneously

e An empty collection of results represents an application failure, a singleton
represents a deterministic result, and a collection with more than one element
represents a non-deterministic choice between the elements of the collection

e Applications: pattern recognition, strings or trees manipulation, etc

e Pattern-matching present in ML, Haskell, Scheme, or Prolog; considered a
convenient mechanism for expressing complex requirements about the
function’s argument, rather than a basis for an ad hoc paradigm of computation
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Rho’s Goodies

e One of the main features of the Rewriting-calculus is its capacity to deal with
(de)structuring structures like e.g. lists: we record only the names of the
constructor and we discard those of the accessors

e Since structures are built-in the calculus, it follows that the encoding of
constructor/accessors is simpler w.r.t. the standard encoding in the
Lambda-calculus. The table below (informally) compares the (untyped)
encoding of accessors in both formalisms

ops/form Rewriting-calculus Lambda-calculus
cons X =Y —»(cons X Y)| ANXYZ. ZXY
car (cons X V) - X MN. Z(AXY.X)
cdr (cons X Y) =Y N. Z(AXY.Y)
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iIRho vs. Programming

e iRho is an extension of Rho with references, memory allocation, and
assignment. It features, all the “idiosyncrasies” of functional/rewriting-based
languages with imperative features and modern pattern matching facilities
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iIRho vs. Programming

e iRho is an extension of Rho with references, memory allocation, and
assignment. It features, all the “idiosyncrasies” of functional/rewriting-based
languages with imperative features and modern pattern matching facilities

e The controlled and conscious use of references, gives to the user the
programming comfort and a good expressiveness which we could not a priori
expect from a so simple calculus

e The "magic ingredients” of iRho are the combination of modern and safe
imperative features (full control over internal data-structure reprs), and of the
“matching power” (full Lisp-like operations, like cons/car/cdr)

e nsumma, iIRho as theoretical engine for an family of ad hoc languages
combining functions, patterns, objects with semi-structured XML-data
(XDUCE, CDUCE, HYDROJ, TOM) ( “..0-0 pattern matching focuses on the

essential information in a msg and is insensitive to inessential information...”)
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A “Fresh” Approach to Rewriting

e We present an imperative fully typed (e.g. a la Church) version of the Rho, a
pattern-matching based calculus with side-effects, which we call iRh

e We formulate the static and dynamic semantics of iRh

e A call-by-value deterministic Natural Semantics a la Kahn: it immediately
suggests how to build an interpreter for the calculus

e The static semantics is given via a first-order type system based on a form of
product-types reflecting the (non-commutative) structure of the term
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A “Fresh” Approach to Rewriting

We present an imperative fully typed (e.g. a la Church) version of the Rho, a
pattern-matching based calculus with side-effects, which we call iRh

We formulate the static and dynamic semantics of iRh

A call-by-value deterministic Natural Semantics a la Kahn: it immediately
suggests how to build an interpreter for the calculus

The static semantics is given via a first-order type system based on a form of
product-types reflecting the (non-commutative) structure of the term

Access and modify a (monomorphic) typed store, and define fixpoints, control
structures, ...

IRho enjoys determinism of the interpreter, subject reduction, and decidability
of type-checking (completely checked by a machine assisted approach, using
the Coq proof assistant). Progress and decidability of type-checking are proved
by pen and paper
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Special Emphasis (iRho)

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor
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Special Emphasis (iRho)

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

a “sound” machine (the interpreter)
a “sound” type system (the type checker), such that
“well typed programs do not go wrong" [Milner],
both semantics being suitable to be specified with nice mathematics,
to be implemented with high-level programming languages,
and to be certified with modern and semi-automatic theorem provers, like
Coq
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Special Emphasis (iRho)

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

a “sound” machine (the interpreter)
a “sound” type system (the type checker), such that
“well typed programs do not go wrong" [Milner],
both semantics being suitable to be specified with nice mathematics,
to be implemented with high-level programming languages,
and to be certified with modern and semi-automatic theorem provers, like
Coq

e Thus, we have encoded in Coq the static and dynamic semantics of iRh

e All subtle aspects, (usually “swept under the rug”) on the paper, are here
enlightened by the rigid discipline imposed by the Logical Framework of Coq
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e Often, this process may had a bearing on the design of the static and dynamic
semantics
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e Often, this process may had a bearing on the design of the static and dynamic
semantics

e This (positive) continuous cycle O O between mathematics, © (O manual
(i.e. pen-and-paper) and (O (O mechanical proofs, and O O “toy”
implementations using high-level languages such Scheme (and back) has been
fruitful since the very beginning of our project
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e Often, this process may had a bearing on the design of the static and dynamic
semantics

e This (positive) continuous cycle O O between mathematics, © (O manual
(i.e. pen-and-paper) and (O (O mechanical proofs, and O O “toy”
implementations using high-level languages such Scheme (and back) has been
fruitful since the very beginning of our project

e Although our calculus is rather simple, it is not impossible, in a near future, to
scale-up to larger projects, such as the certified implementation of compilers for
a “real” programming language of the C family (Cminor C C)
(Action Recherche Coordonnée INRIA, Concert)
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IRh

The Syntax
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First step: Functional fRh

The symbol 7 ranges over types, I', A range over contexts, P ranges over the set

P of pseudo-patterns, (V C P C T), and A, B, .. range over terms

T =b|T T |TAT Types
A:=0A X1 | A, fir Contexts
P:=f|X|fP|PP Patterns
Ai=f| X |P-pA|AA|A A Terms
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First step: Functional fRh

The symbol 7 ranges over types, I', A range over contexts, P ranges over the set

P of pseudo-patterns, (V C P C7), and A, B, ... range over terms
T o=b|T-T|TAT Types
Ax=0] A X1 | A, fir Contexts

P:=f|X|fP|PP Patterns
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Second step: Imperative iRh

The symbol P ranges over the set P of pseudo-patterns, (V C P C 7).

. as in fRh

ﬁ
|

.= ...asin fRh

. as in fRh

~ v b
1l

.= ...asin fRh
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Second step: Imperative iRh

The symbol P ranges over the set P of pseudo-patterns, (V C P C 7).

:=...asinfRho... | T ref Types
A::=...asinfRho... Contexts
P:=...asinfRho...|ref P Patterns

fRh
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iIRho in a glance

Intuitively iRho deals with references a la Caml i.e.:

o (Deref-types) The type 7 ref is the type of “refs” containing a value of type 7
e (Deref-op) The operator ! is a “dereferencing” operator (goto memory)
e (Ref-op) The operator ref is a “referencing” operator (malloc)

e (Assign) The term A := B is an “assignment” operator, which returns as
result the value obtained by evaluating B.

We have not (yet) modeled garbage collection: new locations created during
reduction will remain in the store forever

186— ESSLLI-2004, Nancy The rewriting calculus iRHO



Simple, Naive GC (by Talcott, Mason, Morrissett, et al.)

for 1 < n

letrec x_1 = ref V_1
and ...
and x_n = ref V_n
in A

-——>

letrec x_1 = ref V_1
and ...
and x_1 = ref V_1
in A

if FV(V_1, ..., V_i)/\ {x_(i+1), ..., x.n} =0
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Let-like and conditionals (in a call-by value setting)

As usual, let-like constructs can be generalized with pattern and becomes simple

syntactic sugar for applications (types are omitted), i.e.
et PKAinB 2 (P+-B)A
Conditional too can be easily encoded using pair, applications, and constants, i.e.

<= A thenB else C' 2 (true — B,false - (') A

and

2

neg (true — false, false — true)
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Values and Environments in fRh

e \We introduce the set Val of values and the set of environments &nv

Ay w= fIFALAGA (P —=aA-p) | ({P<a AJ.B-p)

fun closures fail closures

e Environments are partial functions from the set of variables to the set of values

(A, fX=Y

X—AlY) 2
pIX = AJY) < p(Y) otherwise

\

e “Failure-values” ([P <A A,].B - p) denote failure occurring when we cannot
found a correct substitution 6 on the free variables of P such that 6(P) = A,;
Failure-values are obtained during the computation when a matching failure
occurs. It could (in principle) be caught by a suitable exception handler
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Values and Stores in iRh

e The new set of values is enriched by locations. Moreover we define the set of

global stores Store (the symbol o ranges over stores)

A, = ...asinfRho...| _t_ Imperative Values

locations

e Stores are partial functions from the set £ of locations to the set of values

/

A, If 11 = 19

A, - .
ol = Ad(e) < o(Ly) otherwise

\
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e The new set of values is enriched by locations. Moreover we define the set of

global stores Store (the symbol o ranges over stores)
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’
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ol = Ad(e) < o(Ly) otherwise

\
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Natural Semantics for fRh

e We define a call-by-value optimistic operational semantics via a natural proof
deduction system a la Gilles Kahn (induces quasi directly an “interpreter
machine”)

e The purpose of the deduction system is to map every expression into a normal
form, 7.e. an irreducible term in weak head normal form. The present strategy
is call-by-value since it does not work under plain abstractions (i.e. P —a A)

e The present interpreter machine is optimistic since it gives a result if at least
one computation does not produce a failure-value: of course other choices are
possible, like e.g. a “pessimistic’ machine which stops if at least one
failure-value occurs
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Natural Semantics (NS) in a Nutshell

e Variant of Plotkin's Structured Operational Semantics (SOS)

e The semantics induces quasi directly an Interpreter. Judgments are:

premises, 7 >0
store - env - expr |}y, value - store

; (expr-rule)

premises, © >0
store - (A, - Ay) {can value - store

; (appl-case)

premises;, ¢ >0
store-envh (A-A,) Jmatch env’

(patt-case)
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Optimistic- vs. Pessimistic-machines

Our machine is optimistic, 7.e. it does not abort computations if a matching
failure occurs, recording that one computation goes wrong, and hoping that at
least one computation succeeds. The choice of killing the computation once a

failure-value is produced leads to a pessimistic machine

F (33,4 4) 4 (B<43-0),4- (Opt)
tail4+-4

(B34 -4) 4y (B<d30)- .. T

just fail

A pessimistic-machine can be quite easily produced “trucking” an optimistic one
by propagating failure-values
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Just try before | tell you the full story ...

e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ! X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?

@@ - AU’vaI
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e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ' X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?
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Just try before | tell you the full story ...

e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ' X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?

@@ - AUV3|4°[L0I—>4,L1I—>4]
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IRh

Natural Semantics
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Natural Judgments in iRh

e The semantics is given in terms of three judgments
/
o-p F A val A, -0
/
o - <Av ) Bv> U’call C'v e

g-p = <AAV> Umatch ,0/

e The first judgment evaluates a term in iRho, the second apply one value to
another producing a result value and a new store, and the last judgment
updates a correct environment obtained by matching a term against a value
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IRho;

l)va |
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llvai: Application and Structures

0'0',0 — A Wval AV'O'l
0'1',0 — B Wval BV'O'Q

g2 B <AVBV> reall CV'UB
oo-pA Bl C, - o3

(Red_pv)
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llvai: Application and Structures

op-p A bvat Ay -0y
g1-p I b VYval B, - 09
g2 B <Av . Bv> reall C1v 03

- pF AB b Coy  ReATA)

O-O'IOI_AUvaIAv°O'1

o1-pbE B {va B, - 09
O-O'pl_AaBU’val AV7BV'02

(Red—Struct)
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llvai: Functions, Values, Variables

- pF P —pn Al (P —=aA-p) ~ (Red—Fun)
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llvai: Functions, Values, Variables

- pF P —pn Al (P —=aA-p) ~ (Red—Fun)

o pb f et f oo BTV
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llvai: Functions, Values, Variables

- pF P —pn Al (P —=aA-p) ~ (Red—Fun)
o pb f et f oo BTV
X € Domlp) (Red—Var)

O-'IOI_XlLvaIIO(X)'O-
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llvai: Referencing, Dereferencing, Assighnment

op-pHAlva Av-o1 1 ¢ Dom(oq)
oo pFref Alat-orft— A

(Red—ref)
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llvai: Referencing, Dereferencing, Assighnment

op-pHAlva Av-o1 1 ¢ Dom(oq)
oo p b ref Alat- o[t — A

(Red—ref)

oo pFAlvat-o1 € Dom(o)
oo p 1A va o1(t) - 01

(Red—!)
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llvai: Referencing, Dereferencing, Assighnment

op-pHAlva Av-o1 1 ¢ Dom(oq)
op-pbrefA ot — A

(Red—ref )

oo pFAlvat-o1 € Dom(o)
oo p 1A va o1(t) - 01

(Red—!)

L € Dom(oq)
O-O'/OI_AiLvaIL'O-l Ul'pFBUvale'O-Z

O'O'pl—A ::BUvaI BV°O'2[LI—>BV] (Red_::)
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IRho;

Ucall
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Ucall: FunOk, FunKO

go * Po - <P ' Bv> U’match P1

oo-p1 = Ala Ay - o1
O'0|_<<PA—I>AIO>BV> U'call AV'O'1

(Call—FunOk)

202— ESSLLI-2004, Nancy The rewriting calculus iRHO



Ucall: FunOk, FunKO

go * Po - <P ' Bv> U'match P1

oo-p1 = Ala Ay - o1
O'0|_<<PA—I>AIO>BV> Ucall AV'O'1

(Call—FunOk)

39,01- 0 - Po - <P ' Bv> U'match P1
A, = (P:A = A p)
o - <Av ) Bv> Ucall Av 0

(Call—FunKo)
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Ucan: Structure, Algebric, and Wrong

o) - <Av . Cv> U’C3|| Dv 01

01 - <Bv ) Cv> Ucall Ev 09
g - <(Ava Bv) ' Cv> U’call DV7 b, - o9

(Call—Struct)
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Ucan: Structure, Algebric, and Wrong

o) - <Av . Cv> U’C3|| Dv 01

01 - <Bv ) Cv> Ucall Ev 09
g - <(Ava Bv) ' Cv> U’call DV7 b, - o9

(Call—Struct)

— — Call—Algb
0-|_<fAv'Bv>\lJ’callfAva'0'( . gr)
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Ucan: Structure, Algebric, and Wrong

o) - <Av . Cv> U’Call Dv 01

01 - <Bv ) Ov> Ucall Ev 09
g - <(Ava Bv) ' Cv> U’call DV7 b, - o9

(Call—Struct)

— — Call—Algb
0-|_<fAv'Bv>\lJ’callfAva'0'( . gr)

A, = ([P <a B,J.A-p)

- <AV ' Cv> Ueal A, -0 (Call—WrOIlg)
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IRho;

iLmatch
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Umatch: Variables and Constants

o pF (F ) Bmch (Match—Const)
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Umatch: Variables and Constants

o pF (F ) Bmch (Match—Const)

o-phk <X ' Av> Umateh ,O[X — Av] (MatCh—Var)
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Umatch: Structures and References

Let x € {*,}

g - Po - <A ) Av> Umatch P1

g - P - <B ' Bv> Umatch P2
0 - Po - <A*B ) AV*BV> Umatch P2

(Match—Pair)
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Umatch: Structures and References

Let x € {*,}

g - Po - <A ) Av> Umatch P1

g - P - <B ' Bv> Umatch P2
0 - Po - <A*B ) AV*BV> Umatch P2

(Match—Pair)

L € Dom(o) o) = A,
g - o = <P ) Av> iLmatch P1
g - Po - <refP ) L> Umatch P1

(Match—Ref)
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Remark: About Linearity

This choice induces also a modification in the classical syntactic pattern matching
algorithm, since we “hide” the first binding in favor of the second one. The
classical syntactic pattern matching algorithm forces both occurrences to be

matchable with the same value. Both solutions are presented in the table below:

patt < term hide /Scheme force /ML
FXX) < [3,4) pi[X - 3[X = 4] #
F(X,X) < f(4L,4) | p2[X = 4][X — 4] |02 {4/X]

Linearity can be easily implemented (much bigger effort in the Coq code)

207- ESSLLI-2004, Nancy The rewriting calculus iRHO



The Uncle Pat and the Lady Match Still at Work...

We Can Do !

FOR U S ARMY

NEAREST RECRUITING STATION

208— ESSLLI-2004, Nancy The rewriting calculus iRHO



IRho;

Playing with NS
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An Imperative Natural Derivation

Take the imperative term

(F(X,Y) = (3= (X :=1Y)) 1X) f(ref3, ref 4)

with oo = [t — 3][t1 — 4], and 01 2 o[t — 4], and po 2 [X — 1o][Y — 11].
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Just a Nice BTEX Exercise

11 € Dom(oy)
Lo € Dom(oy) oo-po =Y valt1- 00
oo - po = X Jval to - 00 oo-po 1Y Yvard- o9

oo-po- X :=1Y a1 401
00 - po = (3 3) Ymatch o
UO|_<<3_DX:: !Y'p0>°3> Jeal 4 - o1
oo+ po = 1X a3+ 09
oo poF3 =X =Y |aB3—=X:=1Y-pg -0
0-0,,00'_ (3—1>X = 'Y) X U’call4'0-1
oo+ 0+ <f(X7 Y)'f(L07L1)> Umateh po

00 @ F((f(X,Y) = (3= X :=1Y)1X)-0) - f(0,01)) ean 4- 01

= f(ref 3,ref 4) Yval f(eo,t1) - 00
F(f(XY) > B X =1Y)1X) b (f(X,)Y) =B X=1Y)1X)-0)-0

D-0F (f(X,)Y) = (83— X:=1Y)!X) f(ref3,ref4) {Jya 401
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Aliases

et P< A in B c: (P>B)A

<= A thenB else C £ (true — B, false - (') A
neg £ (true — false, false — true)
A:B t (X -B)A X ¢&FVar(B

(Xl, .o Xn) .= (Al, .o An)

>
I

]
e
>

]
3

|| >

1A (ref X - X) A
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Aliases

|| >

et P< A in B
<~ A thenB else C

|| >

|| >

neg true — false, false — true)
A B

(Xl, .o Xn) .= (Al, .o An)

(
(true — B,false - C) A
(
(

|| >

X1 =4;...; X, = A,

|| >

1A 5 (ref X - X) A

Very good, dereferencing is just sugar!
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IRho;

IExamples
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Computing a Negation Normal Form

This function is used in implementing decision procedures, present in almost all
model checkers. The processed input is a implication-free languages of formulas

with generating grammar:

¢ =p | and(¢, ) | or(¢, @) | not(e)

We present two imperative encodings: in the first, the function is shared via a
pointer and recursion is achieved via dereferencing. In the second, formulas are
shared too with back-pointers to shared-subtrees. Type decorations are omitted
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Imperative, |

This imperative encoding uses a variable SELF which contains a pointer to the

recursive code: here the recursion is achieved directly via pointer dereferencing,

assignment and classical imperative fixed-point in order to implement recursion.

Given the constant dummy, the function nnfl is defined as

(v - \
not(not(X)) — ISELF(X),
oA not(or(X,Y))  — and(!SELF(not(X)),!SELF(not(Y))),
ST ] not(and(X,Y)) —  or(ISELF(not(X)), ISELF(not(Y))),
and(X,Y) — and(ISELF(X), ISELF(Y)),
\ or(X,Y) - or(ISELF(X), ISELF(Y)) )

and the imperative encoding is:

let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)
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Imperative-with-Sharing, IS

This encoding uses a variable SELF which contains a pointer to the recursive code
and a flag-pointer to a boolean value associated to each node: all flag-pointers are
initially set to false; each time we scan a (possibly) shared-formulas we set the

corresponding flag-pointer to true. The grammar of shared-formulas is as follows:

bool ::= true | false

flag ::= bool ref
Y = ref @
¢ == p|and(flag,v,v) | or(flag, v, 9) | not(flag, 1))
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Imperative-with-Sharing, IS

Given the constant dummy, the structure nnf2 is defined as follows:
(v =% \
not( By, ref not( B3, X)) — ISELF(!X),
not(Bi,refor(By, X,Y))  — and(ref false, ISELF(ref not(ref false, X)),
ISELF (ref not(ref false,Y))),

not(By,ref and(B2, X,Y)) — or(ref false, ISELF(ref not(ref false, X)),
ISELF(ref not(ref false,Y))),

and(B, X,Y) — <= (neg ref B)
then (B, X,Y) := (true, !SELF(!X),!ISELF(!Y))
else and(B, X,Y),
or(B,X,Y) — <= (neg ref B)
then (B, X,Y) := (true, !SELF(!X),!ISELF(!Y))
\ else or(B,X,Y) )
and the imperative encoding is:

let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF(v)
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Types
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Why a type system?

e Our type discipline assigns a semantical meaning to iRho-programs by
type-checking and hence, allows to catch some error before run-time

e The type system is powerful enough to ensure a type consistency, and to give a
type to a rich collection of interesting examples, namely decision procedures,
meaningful objects, fixed-points, term rewriting systems, etc

e This type system is, in principle, suitable to be extended with a subtyping
relation, or with bounded-polymorphism, to capture the behavior of
structures-as-objects, and object-oriented features
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What’s new in this type system

The main novelty, with respect to previous type systems for the (functional)

fRho is that term-structures can have different types, i.e.

FI_AAITl Fl_ABZTQ
I AB:n AT (Term—Struct)

The new kind of type 71 A 75 is suitable for heterogeneous (non-commutative)
structures, like lists, ordered sets, or objects

More flexible type discipline, where the structure-type 7 A 7 reflects the
implicit non-commutative property of “,” in the term “A, B", i.e. “A, B" does
not behave necessarily as “B, A"

More expressiveness w.r.t. previous typing disciplines on the fRho, in the sense
that it gives a type to terms that will not be stuck at run-time, but it
complicates the metatheory and the mechanical proof development
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Type Judgments

Recall Types and Contexts
Tu=b|T 7 |TAT|T ref

L:=0|I, X7 |, fir

The Type Judgments
I' . ok ' 7:0k T'H A, : T

. / . / . .
FHp:T I'Ho:I THP:7 THA:7T
1.e. well-typed contexts, types, values, environments, stores, patterns, and terms
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IRho;

FI—PP:T
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—: Pattern Rules
I'1,oer, I's . ok

My, I'o b a7

F"PP12’7'1 F"PPQZTQ
F|_PP1,P21T1/\T2 (

(Patt—Start)

Patt—Struct)
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—: Pattern Rules
I'1,oer, I's . ok

My, I'o b a7

F|_PP12’7'1 F"PPQZTQ
F|_PP1,P227'1/\7'2 (

(Patt—Start)

Patt—Struct)

arr(11) = 1o — T3 FI—PfF:Tl I'E P:m
I’I—PfﬁP:'rg

(Patt—Algbr)
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-: Pattern Rules
Fl? a:T) FQ I_F Ok

Fla LT, I‘2 l_P Q. T

FI_PP1:’7_1 FI_PPQ:TQ
FI_prPQ:Tl/\TQ (

(Patt—Start)

Patt—Struct)

arr(r))=n—»m Ik fP:m THP:n
F'}fﬁpl’rg

(Patt—Algbr)

arr(T — ™) T — T

arr(ﬁ A\ 72) ATy —» (74 A 75){ < arr(7-1) = T3 — T4

and  arr(m) =73 -+ T
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IRho;

I'E AT
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~: Variables, Constants, and Structures

I'y,0cr,1's . ok
I'jyoor, o ar 1

(Term—Start)
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~: Variables, Constants, and Structures

I'y,0cr,1's . ok
I'jyoor, o ar 1

(Term—Start)

' A:np ' B:m
FFAA,BITl/\TQ

(Term—Struct)
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—: Abstraction and Application

Dom(A) = FVar(P) I'NARLP:mm T'ARH A1
FFAP—DAA:Tl—DTQ

(Tern
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—: Abstraction and Application

Dom(A) = FVar(P) I'NARLP:mm T'ARH A1
FFAP—DAA:Tl—DTQ

(Tern

arr(m)=mn—-m ' A T'H BZTQ(

A o |
' A B :m Term—Ap
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—: Assign, Referencing, Dereferencing

I'E A: 7 ref I'E B:T ,
A Ik A:=B 2 (Term— Assign)
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—: Assign, Referencing, Dereferencing

I'E A: 7 ref I'E B:T ,
A IF A — 5 (Term— Assign)

FI—AA:T
' ref AT oref

(Term—Ref)
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—: Assign, Referencing, Dereferencing

I'E A: 7 ref I'E B:T ,
A IF A — 5 (Term— Assign)

FI—AA:T
' ref AT oref

(Term—Ref)

FI—AA:Tref
e 1A:r

(Term—Deref)
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IRh

- K R HH

Almost Routine (Hence Omitted)
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Typing the Two Imperative Encodings

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT
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Typing the Two Imperative Encodings

n

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT
let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)

let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF ()
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Typing the Two Imperative Encodings

n

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT
let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)
let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF ()

Ty 2dummy: A7y, SELF: A7y ref (with 71 2b — b)
' 2 dummy: 7\TQ,SELF: 7\7‘2 ref (with o2b ref — b ref)
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Typing the Two Imperative Encodings

n

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT
let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)
let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF ()

Ty 2dummy: A7y, SELF: A7y ref (with 71 2b — b)

' 2 dummy: 7\TQ,SELF: 7\7‘2 ref (with o2b ref — b ref)
() Ty, X:Am,NNF:Am + NNF(¢): Ab

(IS) Tg, X: A7, NNF: A1y F NNF(3)) : Ab ref
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IRho;

Properties
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Properties (v'= proved by the proof assistant Coq)

Determinism)’ If 0 -pF A o A’ -0’ and o-p - A Jya A7 - 0", then A/ = A",
p Vv Vv Vv Vv

and ¢/ = o'
Unique Type)Y If ' = A : 7, then 7 is unique;
A

(Coherence)” o - p -con I if there exist two sub-contexts I'y, and I's, such that
Fl,rg = P, and I’ |_0 o . Pl, and I l_p [ FQ;

(Subject-reduction)” If () HA:7,and 0-0F Al A, - o, then there exists I
which extend I, such that IV, 0 : 0k, and IV K, A, : 7.

(Type-soundness) If (- A: 7, then 0 -0+ A | Ay
(Type-reconstruction) It is decidable if, for a given 7, is it true that ) | A : 7;

(Type-checking) It is decidable if there a type 7 such that 0 5 A : 7.
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Conclusion

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

a “sound” machine (the interpreter)
a “sound” type system (the type checker), such that
“well typed programs do not go wrong" [Milner],
both semantics being suitable to be specified with nice mathematics,
to be implemented with high-level programming languages,
and to be certified with modern and semi-automatic theorem provers, like
Coq

e The paper is quasi a “technical manual” of the softwares (2)

e See 1IMprho.ps, and 1Imprho.scm, and TypedImpRho.v
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imprho.ps
imprho.scm
TypedImpRho.v

DIMPRO
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Lists in the A-calculus vs in the p-calculus

235— ESSLLI-2004, Nancy

A-calculus p-calculus
cons | A XYZZXY | X —-Y — Cons(X Y)
car | \Z.Z(AXY.X)| Cons(XY) > X
cdr | AZ.Z(AXYY) Cons(X Y) =Y

The rewriting calculus

Explicit substitutions



Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —-> X;;
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Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —> X;;

#car [];;
Exception: Match_failure (", 12, 42).
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Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —> X;;

#car [];;
Exception: Match_failure (", 12, 42).

#let car 1 = match 1 with
[] -=> failwith ¢‘error in car’’
|x::m -> x;;

236— ESSLLI-2004, Nancy The rewriting calculus

Explicit substitutions



Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —> X;;

#car [];;
Exception: Match_failure (", 12, 42).

#let car 1 = match 1 with
[] -=> failwith ¢‘error in car’’
|x::m -> x;;

[1 Need to deal with error “by hand”
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Errors in the p-calculus

car 2 Cons(X,Y) — X

(Cons(X,Y) — X) Empty
—, |Cons(X,Y) < Empty|X

The rewriting calculus

Explicit substitutions



Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):

Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt
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Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):
Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt
In plain p-calculus when we apply the rule to the term
Brother(Person(Name(Liz),Father(John)), Person(Name(Bob), Father(Jim)))

we obtain as result the term
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Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):
Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt
In plain p-calculus when we apply the rule to the term
Brother(Person(Name(Liz),Father(John)), Person(Name(Bob), Father(Jim)))

we obtain as result the term

[Brother(Person(Name(X),Father(Z)),Person(Name(Y ), Father(Z7))) <
Brother(Person(Name(Liz), Father(John)),Person(Name(Bob), Father(Jim))))|tt
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Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):

Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt

In plain p-calculus when we apply the rule to the term

Brother(Person(Name(Liz),Father(John)), Person(Name(Bob), Father(Jim)))

we obtain as result the term

[Brother(Person(Name(X),Father(Z)),Person(Name(Y ), Father(Z7))) <
Brother(Person(Name(Liz), Father(John)),Person(Name(Bob), Father(Jim))))|tt

while in p, — calculus-calculus the result is

(Z < John A Z < Jim) tt
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How to represent programs

e Pattern Matching (possibly non-linear).
e Typed Recursion and Strategies ...to put link

e |Imperative features ...to put link
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Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]
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Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]

e to represent proof-terms of rewriting derivation [Nguyen]
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Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]
e to represent proof-terms of rewriting derivation [Nguyen]

e to have a precise control over matching and constraints. Better deal of errors.
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Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]

e to represent proof-terms of rewriting derivation [Nguyen]

e to have a precise control over matching and constraints. Better deal of errors.
How?

e by making explicit matching computations

e by making explicit application of substitutions
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Explicit matching decomposition

e Decompose functional symbols.

e Decompose the structure ;".

e Do not decompose: Abstraction and Application.
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Constraint application

What about?

(X < aAa<bX
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Constraint application

What about?

(X < aAa<bX

[1 Do not apply constraint without solution
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Constraint application

What about?

X < aha<bX

[1 Do not apply constraint without solution

From constraints to substitutions

[ X < AA_ |B
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Constraint application

What about?

X < aha<bX

[1 Do not apply constraint without solution

From constraints to substitutions

[ X < AN 1B — [ X< A}B
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Syntax of the p,-calculus-calculus

Terms AB = X (Variables)
K (Constants)
A— B (Abstraction)
A B (Fonctional application)
C B (Constraint application)
A, B (Structure)
{X <« A}B (Substitution application on terms)

Constraints €,D == AKDB (Match-equation)
| CAD Conjonctions of contraints)
|

(
{X <« A}C (Substitution application on const.)
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Semantics of the p,-calculus-calculus

From rewrite rules to constraints
(p) (A—B)C ~ (A<0)B
(9) (A;B) C — AC;BC
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(p)
()

(Decompose;)
(Decomposer)
(NGood)
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Semantics of the p,-calculus-calculus

From rewrite rules to constraints

(A—- B)C
(A;B) C

From constraints to substitutions

Decomposition
A1; A2 K Bjp; Bo
f(A1...Ap) K f(B1...Bp)
f(Al e An) < g(Bl . Bn)

—
—

L

The rewriting calculus

(A C)B
AC;BC

Al < Bl AN AQ < BQ
A1 << Bl VANERVAN An << Bn
f(Al N An) <<ng g(Bl o« o Bn)

Explicit substitutions



(p)
()

(Decompose;)
(Decomposer)
(NGood)

(T'oSubst)
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Semantics of the p,-calculus-calculus

From rewrite rules to constraints

(A—- B)C
(A;B) C

From constraints to substitutions

Decomposition
A1; A2 K Bjp; Bo
f(A1...Ap) K f(B1...Bp)
f(Al e An) < g(Bl . Bn)
From constraints to substitutions
(X <K< AANC)B

—
—

L

The rewriting calculus

(A C)B
AC;BC

A1<<Bl/\ A2<<BQ

A1<<B1/\.../\An<<Bn
f(Al...An) <<ng g(Bl...Bn)

(C)({X < A}B)
if X € Dom(C)

Explicit substitutions



Semantics of the p,-calculus-calculus

From rewrite rules to constraints

(p) (A—B) C ~ (A<O)B
(9) (A;B) C — AC;BC
From constraints to substitutions

Decomposition
(Decompose; )  Aq;As K Bjp; Bs — A1 < BN Ay K By
(Decomposer) f(A1...Ap) K< f(B1...Bp) — A1 < BIAN...NA, K By
(NGood) f(A1...An) < g(B1...Bp) —  f(A1...Ap) <" g(B1...Byp)

From constraints to substitutions
(ToSubstn) (X < ANC)B — (O{X K A}B)

if X € Dom(C)
Substitution applications

(Replace) {X < A} X — A
(Eliminatey) {X K< A}Y — Y

if XAY
(Eliminate r) {X < A}f —  f
(Share;) {X < A}(Bs3(C) — {X <K A}Bs{X K A}C
(Share(y) {X < A}((B)C) — {X KAIB){XKA}C
(Share—) {X <K A}(B —- C) — B {X <K A}C
(Share) {X < A}(BkK O) — BKA{XKAC
(Sharep) {X < A}(CAD) — {X <K AC AN A{X K AD
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Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))
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Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

—5 not (and (X, Y)) < not (and (tt, ff)) | or (not (X) ,not (Y))
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Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

— _not (and (X,Y)) < not (and (tt, ff)) } ot (not (X),not (YV))
— Decompose ianb (X,Y) < (ano (tt, §f) } ot (not (X),not(Y))
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Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

— _not(anb (X,Y)) < not (an0 (tt, §f) )}Ot (not (X),not (Y))
— Decompose and (X,Y) < (ano (tt, ff)}Ot (not (X),not(Y))
— Decompose X<KHHNY K ff} ot (not (X),not(Y))
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Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

— _not (and (X,Y)) < not (and (tt, ff)) } ot (not (X),not (YV))
— Decompose and (X,Y) < (and (tt, ff) } ot (not (X),not(Y))

— Decompose XKUNY K ff} ot (not (X),not(Y))

— Subst X < tt} {Y < ff}or (not (X) not(Y))
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Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

- not (and (X, Y)) < not (and (t, ff)) | ot (not (X) , not (1))
— Decompose and (X, Y) < (ano (tt, ff) } ot (not (X),not(Y))

— Decompose XKUNY K ﬁ} ot (not (X),not(Y))

— Subst X < tt} {Y < ff}or (not (X) not(Y))

H};ropagation (0t (110{ (tt) ) not (ﬁ)))

[1 Need to compose, to able to combine substitutions, to limit term traversal.
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Properties of the p,-calculus-calculus

e Well behaved properties for substitution application.
e Termination of the constraint handling part.

e Confluence of the calculus.

e Conservativity

e Simulating the A-calculus,
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The pyc-calculus

(GI) X< ANY KB — X<ANY KB
if X#4Y
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The pyc-calculus

(GI) X< ANY KB — X<ANY KB

if XAY
(Good) Ce N D8 —  C&8 N\, DE

if Dom(C8) N Dom(DE) =)
(ToSubst) [C8 ANDJA — [D]{Cs}A
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The pyc-calculus

(GI) X< ANY KB — X<ANY KB

if XAY
(Good) Ce N D8 —  C&8 N\, DE

if Dom(C8) N Dom(DE) =)
(ToSubst) [C8 ANDJA — [D]{Cs}A

if Dom(C8®) N Dom(D) =0
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The pyc-calculus

To deal with compositions: the pyc-calculus

(Compose) {V}({p}A) — {{10rp}({V}14)
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The pyc-calculus

To deal with compositions: the pyc-calculus

(Compose) {V}({p}A) — {{0rp}({V}A)

(Compose)  {WH({prAd) — {0 Ag{U}p} A
[J Properties (confluence AC — CiME)
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Graphs in the p-calculus

[1 improve efficiency

[1 save space (sharing subterms)
[] save time (reduce only once)

* - +
VAN /
T S *
! /N
Y €T Y
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Graphs in the p-calculus

[1 improve efficiency

[1 save space (sharing subterms)
[] save time (reduce only once)

[l Improve expressiveness

[1 infinite data structures

* - +
VAN /
X S * j
| SN /
Y T (7 1
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The syntax of p,-calculus

Terms g = X (Variables)
K (Constants)
G — G (Abstraction)
G g (Functional application)
Gg,g (Structure)
G €]  (Constraint application)
Constraints € = ¢ (Empty constraint)
| X =G (Recursion equation)
| G < G (Match equation)
| C,C (Conjunction of constraints)
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Some p,-terms

AN SN
9__ "9 * +
VAN ()
2 X x
flx,y) [x=9),y = g(x)] 2x2) = ((y+y) [y =)
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The semantics of p,-calculus

(p) (G1 — G2) G3 —p G2 [G1 K G3]
(G1 - G2) [E] G —p G2[G1 K G3, E]
(6) (G1,G2) G3 —s G1 G3,G2 G3

(G1,G2) [E] G3 —s (G1 G3,G2 G3) [E]
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The semantics of p,-calculus

(p) (G1— G2) G3
(G1 — G2) [E] G3

(6) (G1,G2) G3
(G1,G2) [E] G3

—p
—p
5

4

G2 [G1 K G3]

G2 [Gl < G3a E]
G1 G3,Ga G3

(G1 G3,G2 G3) [E]

(propagate) G1 < (G2 [E2]) —p
(decompose) K(Gq,...,Gn) < K(G), ..., G;@) —dk
(eliminate) K <K K, E e
(solved) r <K G FE —

254— ESSLLI-2004, Nancy

The rewriting calculus

G1 K Ga, E»

G1 < GY,...,Gp < G
E

x=G,E ifrx & DV(E)

Graphs in p-calculus



The semantics of p,-calculus

(p) (G1—G2) G3 —p G2 [G1 < G3]

(G1— G2) [E] G —p G2 [G1 < Gg, E]
(6) (G1,G2) G3 —s G1G3,G2 G3

(G1,G2) [E] G3 —s5 (G1 G3,G2 G3) [E]
(propagate)  G1 < (Gg [Eq]) —p  G1 < G, Ey
(decompose) K(G1,...,Gn) < K(GY,...,Gl) —ag4 G1<G|,...,Gn <G
(eliminate) K <K K, E —e FE
(solved) r <L G,E —s x==G,E ifx¢g DV(E)
(external sub) Ctxly] [y = G, E] —es Ctx[G] [y = G, E]

(acyclic sub) G [Gp K Cix[yl,y = G1, E] —ac G [Go K (x[G1],y = Gy, E]
ifx >y, Ve € FVar(Gy)
where K € {=,<K}

(garbage) G[E,z=G] —gc G [E]
if x & FVar(E)UJ FVar(G)
G [€] —gc G
(black hole) Ctx[z] [x =0 x, E] —pp  Ctx[e] [z =6 z, E]
G [y - CtX[JZ], L =o T, E] —wn G [y — CtX[O], L =o T, E]
ify >«
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Example - Multiplication

% —> -+ *
PN / VAN
X S * 1 S
¢ SN !
(7 T Y 1
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Example - Multiplication

(* s(y) = (x1+xy + 21 [11 = x])) (2 x5(2) [z =1])
r1xy + o [z =] [1xs(y) < (2*s(2) [z =1])]
x1*xy+ a1 v =] [xxs(y) K€ zxs(z),z = 1]

1J
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Example - Multiplication

% —> -+ *
VAN / 7N
X S * 1 S
| SN !
Y T Y 1

(% s(y) = (z1 %y + x1 [11 = 2])) (2 % 5(2) [z = 1])
5 x1*xy+ a1 [v1 =x] [xxs(y) € (z*xs(z) [z = 1])]
—p  T1xy+ T [T =2x] [T*xs(y) K z*5(2),z =1]
e T1xy+ o= v <K zy Kz, 2 = 1)
= Tixyta[zvr=z] [t =29y =22 =1]
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Example - Multiplication

% —> -+ *
VAN / 7N
X S * 1 S
| SN !
Y T Y 1

(+s(y) = (z1xy + a1 [11 = 2])) (2% 5(2) [z =1])

o x1*xy+x (v =] [z xs(y) K€ (zx5(2) [z =1])]
—p  T1xy+ T [T =2x] [T*xs(y) K z*5(2),z =1]
. 1yt (=] <K zy K z,2 = 1]

= Tixyta[zvr=z] [t =29y =22 =1]

s (2xz42)[rr=2z]lxr=2,y=2,2=1]

e (zrz42) [m=2] [z =1

e (zx2+2) [z = 1]
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Example - Multiplication

% —> -+ *
VAN e 7N
X S * 1 S

¢ /N |

(% s(y) = (z1 %y + x1 [11 = 2])) (2 % 5(2) [z = 1])
— x1*xy+ a1 [v1 =x] [xxs(y) € (z*xs(z) [z = 1])]
—p X1 ¥ Y+ T [T [z * s(y) K€ z *xs(z),z = 1]
=k Tk Y+ X [T [z <€ z,y K z,2 = 1]

Ty *x Y+ x1 [T x| [x =2,y =2,z = 1]

e (zxzt ) = fe =gy =25 =] (
Al =1) :
] (

I
8

(zx 2z 4+ 2) [T
e (zxz42) |z

—

JJ
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Example - Non-linearity

Success:
f(z,z) [r =y] < f(a,a)
—s  f(y,y) [z =yl < fla,a)
—ye  fy,y) < f(a,a)
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Success:

Failure:

256— ESSLLI-2004, Nancy

Example - Non-linearity

flz,z) [x = y] < f(a,b)
fy,y) [z =y] < f(a,b)
fly,y) < f(a,b)
y<La,y<b

The rewriting calculus

Graphs in p-calculus
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“Untyped” Matching theories |

Empty theory Ty of equality (up to a-conversion)

T =T FT73="13 =7, =T
T =T, (Trans) F T =T (Symm)
=7, =7
FTsr, = Tsrzy), (Context) P = (Befl)
TlfTﬂp: term 77 with term 75 at position p BACK

258— ESSLLI-2004, Nancy The rewriting calculus Matching theories



“Untyped” Matching theories ||

Theory of Associativity T 4(f) (resp. Commutativity T (y)) is defined as Ty plus:

F (T T) T) = [(Th, f(To, T3)) (25509

Comm)

FITT) = [T Th) |

BACK
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“Untyped” Matching theories |ll

Theory of Idempotency Ty is defined as Ty plus the axiom

F AT, T) = ¢ Lem)

Theory of Neutral Element Ty ;0 is defined as Ty plus

0—Left) 0—Right)

F 0.7 =7\ FAT.0) =T

BACK
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“Untyped” Matching theories IV

The Theory of Stuck T is defined as TN(’stk) plus the axioms

\V/(9176’2, \V/C, Aezl—»pasc = C’;éPﬁl
F [P < A]B = stk

I+ stk 7 = stk
Examples
- [3 < 4]5 = stk
|3 < 3|5 = stk I [3 < X]5 = stk
Detecting matching failures BACK
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“Untyped” Matching theories V

Theory of the Lambda Calculus of Objects T ¢y, is obtained by considering the

symbol “" as associative and stk as its neutral element, i.e.:

Taomj = T4y U T

Theory of the Object Calculus Ty, is obtained by considering the symbol “," as

associative and commutative and stk as its neutral element, 7.e.:

Tg(%j = TA(7) U TC(,) U Tstk — TAObj U TC’(,)

THEORIES RECORDS
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The Matching Algorithm for T

The matching substitution solving a matching equation can be computed by the
following matching reduction system:

(Appl)  (Ti To)=<(Ts Ta) ~ Ti<Ts A To<T,

(Struct) (Th,72)=<(T3,Ts) ~ Th<T3 N <Dy

Example
f(X, V)<L f(a,b) ~ X<a AN Y—=<b successful
f(X, X)<Lf(a,b) ~ X<Ka AN Y=<b unsuccessful

BACK
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The Lambda Calculus of Objects \Obj

Abstract syntax

M,N == c¢|X | AX.M|MN |
O Me—n=N)[(Mc—tn=N)|[M<n|
Sel(M, m,N)
Small-step semantics («+ = «— or «+)
(Beta) AX.M)N ~ {X/N}M
(Sel) M<m ~~ Sel(M,m,M)
(Next) Sel((M «<xn=N),m,P) ~ Sel(M,m,P) (m # n)
(Succ) Sel({(M «<xn=N),n,P) ~ NP
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Compiling A\Obj in p-calculus

|[MN]

[ <>1]
[<M+——n=N >]

[ <M—~+n=N >]|
[M” <="m]
[Sel(M, m, N)]|
Theorem: If M ~ o IV,

266— ESSLLI-2004, Nancy

C

X

stk

L | | 1 1 1 | > 11>

—+
>
Q)
)

[M] [N]

kill,,([M]),n — [N]
[M]
|M]

[M] TIPBT o [V

,n— [N]
m=[M] m [M]
m [N]

Example with object update

The rewriting calculus

Lambda Calculus of Objects
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The Combinatory Reduction Systems

[1 The syntax: abstraction and metavariables

MTers := X | | X|MIers | F(MTers, ..., MIers) | Z(M1ers, ..., M1crs)
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The Combinatory Reduction Systems

[1 The syntax: abstraction and metavariables

MTers := X | | X|MIers | F(MTers, ..., MIcrs) | Z(MIers, ..., MIers)

[0 The set of rewrite rules R ={..., L = R,...}

L and R are closed metaterms;

L is of the form f(Ai,..., A,) with Ay, ..., A, metatermes;
MV(L) O MV(R);

L is a Pattern : Yw LfZ(xl,...,xnﬂw x; bound and distinct.
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The Combinatory Reduction Systems

[1 The syntax: abstraction and metavariables

MTers := X | | X|MIers | F(MTers, ..., MIcrs) | Z(MIers, ..., MIers)

[0 The set of rewrite rules R ={..., L = R,...}

L and R are closed metaterms;

L is of the form f(Ai,..., A,) with Ay, ..., A, metatermes;
MV(L) O MV(R);

L is a Pattern : Yw LfZ(xl,...,xnﬂw x; bound and distinct.

O Assignment : o0 ={(Z1,&1),...,(Zn,&n)} s.t. Z; € MV(L),|Z;]| = |&]
[] Substitute : £ = A z1...x.u s.t u s a CRS-term

[] Substitution at the meta-level.

Back to encodings
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Translation examples

Abstraction:
2] Z ()

Patterns:
L = |z]g([y]Z(z,y))

Assignment into rho-substitution:

o={Z \r.x}

Rewrite rules into rho-terms:
Beta :
App([x]Z(x), Z2") = Z(Z')

269— ESSLLI-2004, Nancy

The rewriting calculus

T —/x

[L] =2 — g(y = (Z = y))

lol ={Z/z — x}

[Beta] :
App(x — Z x, 2" = Z 7'

Back to encodings

Combinatory Reduction Systems
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Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]
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Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]

e I contains the types of the free variables of M, and [¢] is a canonical
interpretation of ¢ in \;
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Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]

e I" contains the types of the free variables of M, and [¢] is a canonical
interpretation of ¢ in \;

e [(-reduction (Ax:0.M)N —3 M{N/x} in A; as cut-elimination in £;
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Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]

e I" contains the types of the free variables of M, and [¢] is a canonical
interpretation of ¢ in \;

e [(-reduction (Ax:0.M)N —3 M{N/x} in A; as cut-elimination in £;

e Subject Reduction Theorem as a correction criterion for cut-elimination BACK
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The Famous Barendregt’s \-cube and its 8 logic systems

AW APw PROPw ~ PREDw
)\2/ AP2 PROP2/ - PREDz/
AW APw PROPw ~ PREDw
)\_D/ - )\P/ PROP/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED

272— ESSLLI-2004, Nancy The rewriting calculus

TS



The Famous Barendregt’s \-cube and its 8 logic systems

AW APw PROPw - PREDw
)\2/ A\P?2 PROP2/ - PREDz/
AW APw PROPw ~ PREDw
)\_D/ - )\P/ PROP/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED
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The Famous Barendregt’s \-cube and its 8 logic systems

AW APw PROPw - PREDw
)\2/ A\P?2 PROP2/ - PREDz/
AW APw PROPw ~ PREDw
)\_D/ - )\P/ PROP/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED
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From Barendregt’s \-cube to Pure Type Systems (PTSs)

e Further generalization of various type systems invented independently by
Berardi and Terlouw in '89

e Many systems of typed A-calculus a la Church can be seen as PTSs

e One of the success of PTSs is concerned with logics: the 8 logical systems can
be described/generalised as a simple unique PT'S

BACK
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From Barendregt's \-cube to Pure Type Systems (PTSs)

e Further generalization of various type systems invented independently by
Berardi and Terlouw in '89

e Many systems of typed A-calculus a la Church can be seen as PTSs

e One of the success of PTSs is concerned with logics: the 8 logical systems can
be described/generalised as a simple unique PT'S

e Another one is the compactness of the notation of P TSs which greatly allows to
factorise and simplify proofs in metatheory, in the style “one theorem fits all!”

BACK
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From Barendregt's \-cube to Pure Type Systems (PTSs)

e Further generalization of various type systems invented independently by
Berardi and Terlouw in '89

e Many systems of typed A-calculus a la Church can be seen as PTSs

e One of the success of PTSs is concerned with logics: the 8 logical systems can
be described/generalised as a simple unique PT'S

e Another one is the compactness of the notation of P TSs which greatly allows to
factorise and simplify proofs in metatheory, in the style “one theorem fits all!”

e Examples of well-known PTSs are A\AHOL, APRED, \CC (a.k.a. the \-cube)

BACK
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More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs
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More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...
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More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...

e The degree of automatization of such proof assistants depends also on the
capability of simplifying/reduce terms
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More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented

via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...

e The degree of automatization of such proof assistants depends also on the
capability of simplifying/reduce terms

e The "“Poincaré principle” can be (3td)-reductions, structural well-founded
recursion, provable equality, or some arbitrary notion of reduction
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More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...

e The degree of automatization of such proof assistants depends also on the
capability of simplifying/reduce terms

e The "“Poincaré principle” can be (3td)-reductions, structural well-founded
recursion, provable equality, or some arbitrary notion of reduction

e The more reductions principles you have in the metalanguage, the more
“powerful” the proof assistant is ... BACK
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P TS: One-step, Many-steps, Congruence

Let Ctx|—] be any term 7 with a “single hole” inside, and let Ctx|A] be the result
of filling the hole with the term A;

1. the one-step evaluation — is defined by the following inference rule, where

—B =" U —, U —s:

A —» B
Ctx[A] s Ctx[B]

(Ctx[=])

2. the many-step evaluation ;s and congruence relation =5 are respectively
defined as the reflexive-transitive and reflexive-symmetric-transitive closure of
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Abbreviations and Priorities

Ai,---, A, structure/object

A*B*A Kamin's self-application
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Abbreviations and Priorities

|| >

(AZ)Zzln
A.B

Ai,---, A, structure/object

|| >

A*B*A Kamin's self-application

Operator | Associate | Priority

., Right >
Vi Right >
_<__].-| Right >
e _eft >
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.. still substitutions

o We let
Dom(o) =4{Xy,..., X}
and
CoDom(A) = U m]:Var(AZ-)

1=1..

e A substitution o is independent from A, written O'yf A if
Dom(o) N Dom(A) =)

and

CoDom(o) N Dom(A) =)

277—- ESSLLI-2004, Nancy The rewriting calculus
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Termination of Alg

e The relation ~+ is defined as the reflexive, transitive and compatible closure of

D

o If T~ T’ with T’ a matching system in solved form then, we say that the
matching algorithm Alg (taking as input the system T) succeeds

e The matching algorithm is clearly terminating (since all rules decrease the size
of terms) and deterministic (no critical pairs), and of course, it works modulo
a-conversion and Barendregt's hygiene-convention

e Starting form a given solved matching system of the form

T2 6\ Xi«iiAi A\ aj«ijaj

...n j=0...m

the corresponding substitution {A1/X;7--- A, /X, } is exhibited.
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Functional P TS

We require all specifications to be functional, i.e. for every si, s2, 55, 53,55 € S,
the following holds:

(s1,82) €)A and (sq1,s5) €)A implies  s5 = s,
(81,82,83>€R and (Sl,SQ,Sg)ER implies  s3

Furthermore, we let ST denote the set of topsorts, i.e.
S'={secS|VseS. (s,5) & A}
and define a variant of delayed matching constraint as follows:

B ifBeS'

Tp_
A<a C] .B = { [A <A C].B otherwise

BACK
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Simple Functional Fixpoint

I Efix:(b—b b) — b, and A = X:b — b, and
Q2fix(X) —a X fix(X). We typecheck I’ = Qfix(Q2) : b

IAL fix:(b—b)—=b I AL X:b—b
AR X:b—b IAFR fix(X):b  I'Hfix:(b—b)—b
AR fix(X) : b AR X fix(X):b ' 2:b—b
' Q:b—b ' fix(2) : b
TE Qfix(Q) : b
The reader can verify that our interpreter diverges, i.e.
0+ Q fix() {va stack overflow
281- ESSLLI-2004, Nancy The rewriting calculus DIMPRO



Encoding Term Rewrite Systems

e However, a suitable recursion operator in the style of the object-oriented
encoding allows us to simulate the global behavior of a TRS Let the constants
rec and add, and let

obj.meth 2 ((obj meth) obj)

us 2 rec(S) — add(0,Y) — Y,
phs = ( rec(S) — add(suc(X),Y) — suc(S.rec add(X,Y)) )
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A Nice Circle ... and back

O-O'pl_FlLvalf'O_l

0-1',0|_Alivalaf'0-2 0'2|_<f'a/>licallv'0-3
¢ oo pEF Alav-os

(Red_pv)

e (define-method (Eval::value t::App env) ;()
(with-access::App t (F A)
(let ( (f (Eval F env)) )
(let ( (a (Eval A env)) )
(call £ a) ))))

e Mutual Inductive eval : expr->env->store->value->store->Prop :=
| evalApp: (F:expr) (e:env) (s:store) (f:value) (sl:store)
(eval F e s £ s1) —> (A:expr) (a:value) (s2:store)
(eval A e s1 a s2) -> (v:value) (s3:store)
(call £ a s2 v s3) ->
(eval (App F A) e s v s3)
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