The rewriting calculus

Horatiu Cirstea and Claude Kirchner and Luigi Liquori

In close collaboration with
Clara Bertolissi, Germain Faure, Benjamin Wack

Thanks to the Protheo group@Nancy

ESSLLI Nancy August, 2004

Mathematics is frequently described as “the science of pattern,” a characterisation
that makes more sense than most, both of pure mathematics, but also of the
ability of mathematics to connect to the world teeming with patterns, symmetries,

regularities, and uniformities

Jon Barwise
| awrence Moss

A simple game

The rules of the game:

e — O
oo — O
O — ©
ce — ©

A starting point:

000000000 O0OO00O0O0O OO0

Who wins? (i.e. put the last white)

3— ESSLLI-2004, Nancy The rewriting calculus Introduction

4— ESSLLI-2004, Nancy

0000000000000 00 e 80
0000000000000 000O0
€00 000000000000 eO0
00 000000000000 e8O0
000000000000 e 80
[SNeN NeN N NoNeN NolNoX X Jol

oNeX NoX X NeNeX XeXel I)

ool Jol N NeNeN NeI'Y)
[eleTN N NoloN NoN X
ceeeoOceOCee
®©e 00000 00
©e0 000000
® 000 e00
@000 00
® o000
o000
e
(0

O

The rewriting calculus

Introduction

May | always win?

4— ESSLLI-2004, Nancy

0000000000000 00 e 80
0000000000000 000O0
€00 000000000000 eO0
00 000000000000 e8O0
000000000000 e 80
[SNeN NeN N NoNeN NolNoX X Jol

oNeX NoX X NeNeX XeXel I)

ool Jol N NeNeN NeI'Y)
[eleTN N NoloN NoN X
ceeeoOceOCee
®©e 00000 00
©e0 000000
® 000 e00
@000 00
® o000
o000
e
(0

O

The rewriting calculus

Introduction

L NN JoN JoleN N N N NelolN NolNoN X Io
0000000000000 000O0
0000000000000 e 80
00 000000000000 8O0
000000000000 e 80
[SNeN NeN N NoNeN NolNoX X Jol
OleN Nol N Nelel Nolel I}
ool Jol N NeNeN NeI'Y)
[eleTN N NoloN NoN X
ceeeoOceOCee
®©e 00000 00
©e0 000000
® 000 e00
@000 00
® o000
o000
e
o0

O

May | always win? Do we get always the same result?

4— ESSLLI-2004, Nancy The rewriting calculus Introduction

L NN JoN JoleN N N N NelolN NolNoN X Io
0000000000000 000O0
0000000000000 e 80
00 000000000000 8O0
000000000000 e 80
[SNeN NeN N NoNeN NolNoX X Jol
OleN Nol N Nelel Nolel I}
ool Jol N NeNeN NeI'Y)
[eleTN N NoloN NoN X
ceeeoOceOCee
®©e 00000 00
©e0 000000
® 000 e00
@000 00
® o000
o000
e
o0

O

May | always win? Do we get always the same result? Does the game terminate?

4— ESSLLI-2004, Nancy The rewriting calculus Introduction

What are the basic operations that have been used?

5— ESSLLI-2004, Nancy The rewriting calculus Introduction

What are the basic operations that have been used?

1- Matching
The data: @@ 00 O e O ee
The rewrite rule: - — e

5— ESSLLI-2004, Nancy The rewriting calculus Introduction

What are the basic operations that have been used?

1- Matching

The data: e® 0 O e O ee

The rewrite rule: - — e

2— Compute what should be substituted
The lefthand side: °

5— ESSLLI-2004, Nancy The rewriting calculus

Introduction

What are the basic operations that have been used?

1- Matching

The data: e® 0 O e O ee

The rewrite rule: - — e

2— Compute what should be substituted
The lefthand side: °

3— Replacement
The new generated data: ee| e |[ce0 ee

5— ESSLLI-2004, Nancy The rewriting calculus

Introduction

What are the basic operations that have been used?

1- Matching
The data: @@ @0 O e O oo

The rewrite rule: - — e

2— Compute what should be substituted
The lefthand side: o

3— Replacement
The new generated data: ee| e |[ce0 ee

Note that, that last list is a NEW object

5— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27

What are the natural?

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?
Objects build from a constant called 0 and a unary operator s (successor).

Some example
s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27

What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27

What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).

Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +

For example we can write s(s(0)) + s(s(0)), 0+ s(s(s(s(s(s(s(s(s(s(0))))))))))

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +
For example we can write s(s(0)) + s(s(0)), 0+ s(s(s(s(s(s(s(s(s(s(0))))))))))

how do we express the result 7

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (1)

How can we compute 2 + 27
What are the natural?

Objects build from a constant called 0 and a unary operator s (successor).
Some example

s(s(s(0))) often denoted 3, s(s(s(s(s(s(s(s(s(s(0)))))))))) often denoted 11

We can now define a binary operator +
For example we can write s(s(0)) + s(s(0)), 0+ s(s(s(s(s(s(s(s(s(s(0))))))))))

how do we express the result 7

by the way . . ., what is - result ?

6— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (2)

Peano gives a meaning to addition by using the following axioms:

0+ x X
s(r) +y = s(z+y)

7— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (2)

Peano gives a meaning to addition by using the following axioms:

Thus
s(s(0)) + s(s(0))

7— ESSLLI-2004, Nancy

O+x = x
s(z) +y = s(z+y)
s(s(0) + s(s(0))
s(s(0+ s(s(0))))
s(s(s(s(0))))
(0) + s(s(s(0

The rewriting calculus

Introduction

Let us do simple math: just addition in Peano arithmetic (2)

Peano gives a meaning to addition by using the following axioms:

O+x = x
s(z) +y = s(x+y)
Thus
s(s(0)) +s(s(0)) = s(s(0) + s(s(0))
= s(s(0+s(s(0))))

s(s(s(s(0))))

s(0) + s(s(s(0)))

0+ 0+ 0+ s(s(s(s(0))))

Is there a better result?

7— ESSLLI-2004, Nancy The rewriting calculus

Introduction

Let us do simple math: just addition in Peano arithmetic (3)

Let us COWputG a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

8— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus s(s(0)) + s(s(0)) — s(s(0) + s(s(0)) — s(s(0+ s(s(0)))) — s(s(s(s(0))))

8— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus s(s(0)) + s(s(0)) — s(s(0) + s(s(0)) — s(s(0+ s(s(0)))) — s(s(s(s(0))))

Is this computation termainating

8— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus s(s(0)) + s(s(0)) — s(s(0) + 5(s(0)) — s(s5(0+ s(5(0)))) — s(s(s(5(0))))
Is this computation termainating

is there always a result (e.g. an expression without +)

8— ESSLLI-2004, Nancy The rewriting calculus Introduction

Let us do simple math: just addition in Peano arithmetic (3)

Let us Campute a result by turning the equalities into rewrite rules:

O+2x — =x
s(z) +y — s(z+y)

Thus 5(5(0)) 4 s(s(0)) — s(s(0) + 5(5(0)) — 5(s(0 + 5(5(0)))) — s(s(5(5(0))))
Is this computation termainating
is there always a result (e.g. an expression without +)

is such a result unique 277

8— ESSLLI-2004, Nancy The rewriting calculus Introduction

What are the basic operations that have been used? (2)

9- ESSLLI-2004, Nancy The rewriting calculus Introduction

What are the basic operations that have been used? (2)

1- Matching
The data:

The rewrite rule:

9- ESSLLI-2004, Nancy

The rewriting calculus

Introduction

What are the basic operations that have been used? (2)

1- Matching

The data: s(-) + -
o e

2— Compute what should be substituted

The instanciated lhs: _

The rewrite rule:

9- ESSLLI-2004, Nancy The rewriting calculus Introduction

What are the basic operations that have been used? (2)

1- Matching

The data: s(-) + -
]

2— Compute what should be substituted

The instanciated lhs: _

3— Replacement
The new generated data: | s(s(0)+s(s(0)))

The rewrite rule:

9- ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

o] fib(0) —
6] fib(1) —

1
1
] fib(n) — fib(n — 1)+ fib(n — 2)

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

o] fib(0) — 1
8] fib(l) — 1
vl fib(n) — fib(n —1) 4+ fib(n — 2)

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

o] fib(0) — 1
8] fib(l) — 1
7] fib(n) — fib(n — 1) + fib(n — 2)

fib(2) + fib(1)

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

o] fib(0) — 1
8] fib(l) — 1
vl fib(n) — fib(n —1) 4+ fib(n — 2)

fib(2) + fib(1) — fz'b(2)+.

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

Y] fib(n)

fib(2) + fib(1) — fib(2) + 1]

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

£ib(1) + fib(0) + 1

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

fib(1) + fib(0) +1 —

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

fibonacci

fib(1) + fib(0) +1 —

Finally fib(3) =3, fib(4) =5, ...

10— ESSLLI-2004, Nancy The rewriting calculus Introduction

Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction

Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction

Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction

Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

11- ESSLLI-2004, Nancy The rewriting calculus Introduction

Graphical Rewriting

rF — F+F-F—-FF4+F4+F-F

L-systems (Lindenmeier)

11- ESSLLI-2004, Nancy The rewriting calculus Introduction

Ecological Rewriting

Plant development

productions

http://www.cpsc.ucalgary.ca/Redirect/bmv/vmm-deluxe/Section-08.html

12— ESSLLI-2004, Nancy The rewriting calculus Introduction

/etc/sendmail.cf

O(#)nullrelay.m4 8.19 (Berkeley) 5/19/1998 #it#it#

This configuration applies only to relay-only hosts. They send
all mail to a hub without consideration of the address syntax
or semantics, except for adding the hub qualification to the
addresses.

This is based on a prototype done by Bryan Costales of ICSI.

H O H O H H O H H H H

HHHHHHHH AR HH AR HH AR HH AR R AR HHHRHBHRHHHRHBFHHHHRHFHRHAGHHFRHH SRR H SRR RS RH
HHHHHHHH AR HH SRR AR HH AR B H AR B RS R BB SRR B SRR PSR H B G RHFH RS GHH SRR GRS BH SRR SRS
HHH###

HHH### REWRITING RULES

HHH#H##

HHHHAHHH AR HH AR HHF R HHF R HHF R HHH R HHH R HHF R H AR H AR HFFRH AR AR RS HH SRR H SR H
HHHHHHHH AR HH AR HHF R HH AR HH SRR HH R HHHRHHHRH B G R HBHHHFFRHAGHH SRR SRR H SRR RS RH

#H###HHHH#H A HHHH RS HH RS H S HHH SRR TS H?
Ruleset 3 —-— Name Canonicalization

13— ESSLLI-2004, Nancy The rewriting calculus Introduction

HAHHHHHHHHHHHHHHFRHHH AR HH SRR H SRR SRR SRR RS RH

53

handle null
R$Q

strip group:

REx*

R$x < $x > $x
R$x :: $x <@>
R:include: $x*
RE*x : $x <©>

input

$0 <O@>

syntax (not inside angle brackets!) and trailing semicolon

<@>

<@>

$:

&L B fH &L

$1 <@> mark addresses

$1 < $2 > $3 unmark <addr>

$1 :: $2 unmark node: :addr
:include: $1 unmark :include:...
$2 strip colon if marked

R H R R R
Ruleset 4 -- Final Output Post-rewriting

14— ESSLLI-2004, Nancy

The rewriting calculus Introduction

HHHHHHHH AR HHH R H SRR SR HH SR HH AR B H SRR B SRR B SRR B SR RIS H
sS4

R$*x <@> $@ handle <> and list:;

strip trailing dot off before passing to nullclient relay
R$* @ $+ . $1 @ $2

15— ESSLLI-2004, Nancy The rewriting calculus Introduction

Equational description of a sorting algorithm

sorts NeList List ; subsorts Nat < NelList < List ;
operators

nil : List ;

@ @ : (List List) List [associative id: nil] ;

@ @ : (NelList List) NelList [associative] ;
hd @ : (NeList) Nat ;
tl @ : (NeList) List ;
sort @ : (List) List ;
end
rules for List
X, Y : Nat ; L L’ L’’ : List;
hd (X L) => X ; tl (X L) =L ;
sort nil => nil .
sort (L XL>YL”) = sort (LYL” XL”) if Y < X .
end

sort (6 54321 =

16— ESSLLI-2004, Nancy The rewriting calculus Introduction

Back with the simple game

The rules of the game:

®e® — O
oo — O
0 — ©
ce — ©

A starting point:

000000000 O00OO00O0O0O 00

From a given start, is the result determinist?

17— ESSLLI-2004, Nancy The rewriting calculus Introduction

€0 000000000000 eO0
€0 0000000000 @ 80
NN Nl N NolNeN NeleX ¥ Jol
SN NeX N NolNol Nelel Y
SN JoX X NoloN Wolt X
00008000 ee
ceeeocoOeOee
©0 00000 00
@0 000000
® @00 000
LN NeX ol
® o 000
®0 o0
060
[)

©)

Analysing the different cases

18— ESSLLI-2004, Nancy The rewriting calculus Introduction

Disjoint redexes:

Is the same as:

19— ESSLLI-2004, Nancy

The rewriting calculus

Introduction

No disjoint redexes (central black):

but

or

but

20— ESSLLI-2004, Nancy

NON IOIIED

0@ - - -

The rewriting calculus

..2...

Introduction

No disjoint redexes (central white):

but

or

but

21— ESSLLI-2004, Nancy

The rewriting calculus

Introduction

22— ESSLLI-2004, Nancy

Thus in all the cases:

The rewriting calculus

Introduction

0+«

x *x 0
i(x+y)
x* (Y + 2)
(zxy) *y
i(x) xy
i(0)

T+ 1y

23— ESSLLI-2004, Nancy

Alternative Rings

X 0x*xx
0 i(x) + x
i(z) + i(y) 1(i(x))
(@xy)+(xxz) (x+y)*z
0 (x+y)+ =
y+x

The rewriting calculus

8 O O

/N

T xz)+ (y*2)
z+ (y+ 2)

Introduction

Can we prove by rewriting the Moufang ldentities?

(xxy)*xx = xx(y*zx)

(R.Moufang, 1933)
(S.Anantharaman and J.Hsiang, JAR 6, 1990)

24— ESSLLI-2004, Nancy The rewriting calculus Introduction

An additive group G is defined by the set of equalities

r+e = X
r+y+z) = (r+y) +z
r+i(z) = e

How to check that two elements of the group are the same?

i(x+y) =?=1i(y) +i(x)

25— ESSLLI-2004, Nancy The rewriting calculus Introduction

Then

ix+y)="=1ily)+i(z) & ilz+y —... > e—...

26— ESSLLI-2004, Nancy

Tr+e
e+

z+ (y+ 2)
x +i(x)

T

The rewriting calculus

An equivalent deterministic term rewrite system

— i(y) +i(z)

Introduction

XSLT

Note that XSLT is just a (special) kind of rewriting language,
acting on XML documents

27— ESSLLI-2004, Nancy The rewriting calculus Introduction

XSLT: example 1/3

Document Example D.1 in the Appendix of XSLT specification
<xsl:stylesheet
version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/TR/xhtmll/strict">

<xsl:template match=doc>
<html>
<head>
<title> <xsl:value-of select=title /> </title>
</head>
<body> <xsl:apply-templates/> </body>
</html>
</xsl:template>

<xsl:template match=chapter/title>
<h2> <xsl:apply-templates/> </h2>
</xsl:template>

28— ESSLLI-2004, Nancy The rewriting calculus Introduction

XSLT: example 2/3

When applied to
<doc>
<title>Document Title</title>
<chapter>
<title>Chapter Title</title>
<section>
<title>Section Title</title>
<para>This is a test.</para>
<note>This is a note.</note>
</section>
<section>
<title>Another Section Title</title>
<para>
This is
<emph> another </emph>
test.
</para>
<note> This is another note. </note>
</section>
</chapter> </doc>

29— ESSLLI-2004, Nancy The rewriting calculus

Introduction

XSLT: example 3/3

we get as result the HTML document

<html><head><title>Document Title</title></head><body>

<h1>Document Title</h1><h2>Chapter Title</h2><h3>Section Title</h3>
<p>This is a test.</p><p class=note>

NOTE:This is a note.</p><h3>Another Section
Title</h3><p>This is another test.</p><p class=note>
NOTE:This is another note.</p>

</body></html>

Which we usualy prefer to see as

Window Help

CRORO)

@ @ Eﬁ\e:fﬁ\a‘\umes]usels.’(

m2 bibtexDB dico acisi-C5-secu aciSI-CS

Document Title

Chapter Title

Section Title
This is a test.

NOTE:This is a note.
Another Section Title

This is another test.

NOTE:This is another note.

30— ESSLLI-2004, Nancy The rewriting calculus Introduction

The 4 basic ingredients of a rewriting step: 1- The rewritten
objects

They can be:
e terms like 2 4 i(3) or XML documents

e strings like “What is rewriting?” sed performs string rewriting
e graphs

e sets

e multisets

e higher-order terms

31— ESSLLI-2004, Nancy The rewriting calculus Introduction

The 4 basic ingredients of a rewriting step: 2- Substitution

Graphting = First-order substitution
Replace all the instanciated variables by their values

Example: Apply o ={x+— b,y — a} on f(x,g(z,y))

Denoted either o(g(z, g(x,y))) or (g9(x,g(x,y)))o

32— ESSLLI-2004, Nancy The rewriting calculus Introduction

The 4 basic ingredients of a rewriting step: 3- Matching
Finding a substitution o such that

T
o=t
is called the matching problem from [to ¢, modulo the theory T

When T = (), it is decidable in linear time in the size of ¢
It induces a relation on terms called subsumption

Example: f(x, g(z,y))<pf (b, g(b,a))

33— ESSLLI-2004, Nancy The rewriting calculus Introduction

The 4 basic ingredients of a rewriting step: 4- Replacement

At a given occurrence of a term, replace the existing subterm by another one

Example:
Put f(x,a) at occurence 1.1 in g(g(a,x), f(b,0))

34— ESSLLI-2004, Nancy The rewriting calculus Introduction

How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

35— ESSLLI-2004, Nancy The rewriting calculus Introduction

How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R

35— ESSLLI-2004, Nancy The rewriting calculus Introduction

How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R

— find a subterm of ¢

35— ESSLLI-2004, Nancy The rewriting calculus Introduction

How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R

— find a subterm of ¢

— that matches the left hand side of the rule

35— ESSLLI-2004, Nancy The rewriting calculus Introduction

How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R
— find a subterm of ¢
— that matches the left hand side of the rule

— and replace that subterm by the right hand side of the rule instanciated by the
match

Denoted ¢t =7 t/

35— ESSLLI-2004, Nancy The rewriting calculus Introduction

How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R
— find a subterm of ¢
— that matches the left hand side of the rule

— and replace that subterm by the right hand side of the rule instanciated by the
match

Denoted t =5 t/
Simple?. . .

35— ESSLLI-2004, Nancy The rewriting calculus Introduction

How does (first-order) rewriting work?

It relies on the 4 notions:
(first-order) terms, substitution, matching, replacement
and, given a set of rules 'R and a term ¢ to be rewritten, it consists to:

— find a rule in R
— find a subterm of ¢
— that matches the left hand side of the rule

— and replace that subterm by the right hand side of the rule instanciated by the
match

Denoted t =5 t/
Simple?. . . let's sum-up

35— ESSLLI-2004, Nancy The rewriting calculus Introduction

What is rewriting? (1/2)

1- Discriminate
to give the possibility to discriminate directly
“one image is better than ten explanations”

36— ESSLLI-2004, Nancy The rewriting calculus Introduction

What is rewriting? (1/2)

1- Discriminate
to give the possibility to discriminate directly
“one image is better than ten explanations”

36— ESSLLI-2004, Nancy The rewriting calculus

Introduction

What is rewriting? (1/2)

1- Discriminate
to give the possibility to discriminate directly
“one image is better than ten explanations”

lambda-calculus is not discriminating: one needs to encode matching

36— ESSLLI-2004, Nancy The rewriting calculus Introduction

What is rewriting? (2/2)

1- Discriminate
2- Transform what has been discriminated

37— ESSLLI-2004, Nancy The rewriting calculus Introduction

What is rewriting? (2/2)

1- Discriminate
2- Transform what has been discriminated

-| o« @« — e |discriminates the repetition of two black bullets

e o0 e ¢ 0 O @ @ |srewritten, for example,into e o e o0 o e e

37— ESSLLI-2004, Nancy The rewriting calculus Introduction

What is rewriting? (2/2)

1- Discriminate
2- Transform what has been discriminated

-| o« @« — e |discriminates the repetition of two black bullets

e o0 e ¢ 0 O @ @ |srewritten, for example,into e o e o0 o e e

-l xx0 — 0 |discriminates objects where x is arbitrary

3 x0 Isrewritteninto 0

37— ESSLLI-2004, Nancy The rewriting calculus Introduction

1- Discriminate

What is rewriting? (2/2)

2- Transform what has been discriminated

® O 6 ¢ O O o o

discriminates the repetition of two black bullets

-l x0 — 0

discriminates objects where x is arbitrary

3 %X 0

Is rewritten, for example, into

Is rewritten into 0

-lx et x —

X

r=3

37— ESSLLI-2004, Nancy

et

discriminates objects where x is repeated

r=3

IS rewritten into en

The rewriting calculus

r=3

® O €6 O O o o

Introduction

Important: Rewriting is always in need of a strategy

e to chose the appropriate rule
e to find an appropriate occurrence

e to chose the appropriate result

38— ESSLLI-2004, Nancy The rewriting calculus Introduction

Examples using ELAN

ELAN, a system for clever rewriting: deduction modulo at work

ELAN= computation rules + (deduction rules + strategies)

Implements rewriting for

e computation Fibonacci
e proving Prop. Seq. Calculus
e solving 3 queens

39— ESSLLI-2004, Nancy The rewriting calculus Introduction

Example 1: Very simple ...

module fib_builtin
import global builtinlInt;
end

operators global
fib(@) : (builtinInt) builtinInt ;
end

rules for builtinInt
n : builtinInt ;

global

[] £ib(0) => 1 end

[1 fib(1) => 1 end

[1 fib(n) => fib(n - 1) + fib(n - 2) if greater_builtinInt(n,1) end

end

end

fib(33) = 5702887 11405773 rewrite steps in 0.695 s 16.411.184 rewrite/s

Digital 500/500, 128Mo

40— ESSLLI-2004, Nancy The rewriting calculus Introduction

Example 2: propositional sequent calculus

H PFQ
HFEF-PQ

neg —r

rules for Seq
P, Q, R : Pred; H : Pred; 51, S2 : Seq;
global
[negd] H |- P : Q =>81
where S1 := (dedstrat) H : P |- Q
end

41— ESSLLI-2004, Nancy The rewriting calculus Introduction

The true code

Built (for later use) the proof term:

[negr] H |- "P : Q => [#negd,H |- "P : Q] <> 81
where S1 := (dedstrat) H : P |- Q
end

42— ESSLLI-2004, Nancy The rewriting calculus Introduction

strategies for Seq
implicit

[] SetRules

end
end

strategies for Seq
implicit
[] dedstrat
end

end

43— ESSLLI-2004, Nancy

Strategies

=> first one(
axio
,negd ,disjd
,impd ,negg ,conjg
,disjg ,conjd ,impg)

=> first one(Start);
repeat*(SetRules)

The rewriting calculus

Introduction

The resulting proof term

[dedstrat] (A |=> B |- ~(B) |=> ~(4))
evaluates to:

#infer [#impd] < (A#to B)#vdash(#neg(B)#to#neg(A))>
<#infer[#negd] <(A#to B),#neg(B)#vdash#neg(A)>
<#infer [#negg]<A, (A##ito B) ,#neg(B)#vdash EmptyP>
<#infer [#impg] <A, (A#to B)#vdash B>

<#tinfer [#axiom] <A,B#vdash B><#mbox<>>&

#infer [#axiom] <A#vdash A,B><#mbox<>>>>>>

end

44— ESSLLI-2004, Nancy The rewriting calculus Introduction

Example 3: 8 queens

is represented by the list (3,1,0,2)

45— ESSLLI-2004, Nancy The rewriting calculus Introduction

Module nqueensAC

operators

global
queensAC(@) : (int) listl[int] ;

local
queens(@,Q) : (set listl[int]) listl[int] ;
0k(@,0,0) : (int int list[int]) bool;
@U@ : (set set) set (AC);
(@) : (int) set ;
[@ U @] : (int set) set ;
Set (@) : (int) set ;
Empty : set ;

end

46— ESSLLI-2004, Nancy The rewriting calculus Introduction

rules for list[int]
n:int;
global
[1 queensAC(n) => queens(Set(n-1),nil)

rules for list[int]
pl: int; s,sl:set ; 1,11: list[int];

local
[final] queens(Empty,l) => 1 end
[queensrule] queens(s,l) => queens(sl,pl.1)

where (set) [pl U sl1] :=(extractPos) s
if ok(1,pl1,1)

strategies for listl[int]

implicit
[] queens => repeat*(dk(queensrule)); first(final)

47— ESSLLI-2004, Nancy The rewriting calculus Introduction

Related systems

e TOM (tom.loria.fr)
e ASF+SDF

e OBJ, MAUDE

e STRATEGO

o LPG

48— ESSLLI-2004, Nancy The rewriting calculus Introduction

Some applications

e XML and XSLT

e Program transformation (e.g. compilation)
e Simplification (e.g. computer algebra)

e Computation

e Production rules

e Model checking

e Proof search —Cariboo—

e Chemistry

49— ESSLLI-2004, Nancy The rewriting calculus Introduction

Syntactic Matching: A rule based description

Delete

N
Decomposition

N
SymbolClash

N
MergingClash

N
SymbolVariableClash

—>

t<<t AP

P

Fltty. o t)=<f(t,. ..
/\z’:l,...,n tZ«t; NP
f(tl, ce ,tn)*«g(/1, c
fail

<t N\Nx=<t' NP
fail

f(t,...
fail

tn)=<<x AP

) NP

b)) NP
it f#g
if t £t
if € X

50— ESSLLI-2004, Nancy

The rewriting calculus

Introduction

51— ESSLLI-2004, Nancy

Find a match

T+ (y+y) K 1+4(4+3)
= Decomposition <1 N yxy = 4x3
=>Decomposition LK1 A y=<4 N y=<3

:>MergingC|ash fail

The rewriting calculus

Introduction

51— ESSLLI-2004, Nancy

Find a match

T+ (y+y) K 1+4(4+3)
= Decomposition <1 N yxy = 4x3
=>Decomposition LK1 A y=<4 N y=<3

= MergingClash fail

T+ (y*3) K1+ (4%3)
=>Decomposition L1 A y*x3=4x%3
=>Decomposition T<<1 A y=<4 N 3<3
= Delete T=<K1 N y=<4

The rewriting calculus

Introduction

Theorem

The normal form by the rules in Match, of any matching problem ¢t<t’ such that
Var(t) N Var(t") = (), exists and is unique.

1. If it is fail, then there is no match from ¢ to t'.

2. If it is of the form A, ; z;=<t; with I # (), the substitution o = {x; — t;}ics is
the unique match from ¢ to t’.

3. If it is empty then ¢ and t’ are identical: ¢t = /.

52— ESSLLI-2004, Nancy The rewriting calculus Introduction

Aims of the p-calculus

e [o define at the same level

rewrite rules

rewriting strategies

applications of rules and strategies
results

N I N R

53— ESSLLI-2004, Nancy The rewriting calculus Introduction

Aims of the p-calculus

e [o define at the same level

rewrite rules

rewriting strategies

applications of rules and strategies
results

N I N R

e To unify:

[first-order rewriting (ELAN, Maude . . .)
L] A-calculus

53— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting RELATION

flz,y) — @

<~

54— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting RELATION

flz,y) — @

<~

f(a,b)

54— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting RELATION

flz,y) — @

<~

f(a,b) — R a

54— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting CALCULUS

f(XaY) - X

Abstraction Operator

54— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

f(XvY) - X f(avb)

55— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

(F(X,Y) - X))+ f(a,b)

Application Operator

55— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

(F(X,Y) - X))+ f(a,b)

Application Operator

Rule to evaluate such a term: (p)

55— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

56— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

(fxY) ~ X)- flab)

o)
={X —a,Y — b}

56— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

(fxY) - X) flab)

o)
={X —a,Y — b}

56— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

56— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

56— ESSLLI-2004, Nancy The rewriting calculus Introduction

57— ESSLLI-2004, Nancy

For the rewriting relation

fay) ==

The rewriting calculus

Introduction

For the rewriting relation

fay) ==

g(a,b)

57— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting relation

fay) ==

g(a,b) =R

57— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

f(XvY) - X g(avb)

58— ESSLLI-2004, Nancy The rewriting calculus Introduction

For the rewriting calculus

58— ESSLLI-2004, Nancy The rewriting calculus Introduction

Related topics and works

e pattern lambda calculus (Peyton-Jones, Van Oostrom, Colson)
e pattern calculus (Jay)

e combination of rewriting and HO features

CRS (Klop)

lambda calculus and rewriting (Breazu Tannen & Gallier, Okada)
CC and rewriting (Blanqui, Jouannaud, Okada)

HO rewriting (Nipkow)

e ML, Haskel, Rogue

59— ESSLLI-2004, Nancy The rewriting calculus

Introduction

(Some) Recommended Readings

e The Rewriting Calculus Home page
http://www.loria.fr/“faure/TheRhoCalculusHomePage/

e Repository of Lectures on Rewriting and Related Topics
www.loria.fr/“ckirchne/

e Online book on rewriting www.loria.fr/“ckirchne/rsp.ps.gz

e L’intelligence et le calcul (may be translated to English?)
Jean-Paul Delahaye
Look also at his web page

e Term Rewriting Systems
Terese (M. Bezem, J. W. Klop and R. de Vrijer, eds.)
Cambridge Univerty press, 2002

e Term Rewriting and all That
Franz Baader and Tobias Nipkow
Cambridge Univerty press, 1998

60— ESSLLI-2004, Nancy The rewriting calculus Introduction

C AL

=0

The Untyped Syntax

P = T Patterns
T = X|IK|P—->T|TT||PT|T|T, T Terms

1. T7 — T5 denotes a rule abstraction with pattern 17 and body 15
... the free variables of 17 are bound in T5

2. |11 < T5|T5 denotes a delayed matching constraint
... the free variables of T} are bound in 75 but not in 75

3. The terms can be also structures built using the symbol “,

4. We work modulo the a-convention and the hygiene-convention

62— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-terms

(X = X) a similar to the A-term (A\z.x) a

(XX X)X —-XX) the well-known A-term (ww)

63— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-terms

(X = X) a similar to the A-term (A\z.x) a

(X X X) (X —- X X) the well-known A-term (ww)
(a =) a the application of the rule a — b to the term «a

(f(X,Y)—g(X,))) f(a,b) a classical rewrite rule application

63— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-terms

(X = X) a similar to the A-term (A\z.x) a

(X=X X)) (X —-XX) the well-known A-term (ww)

(a —b) a the application of the rule a — b to the term a
(f(X,Y)—g(X,))) f(a,b) a classical rewrite rule application

(a = b,a—c)a “non-deterministic” application

63— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some abbreviations

(T;)=t-m 2 Ty,...,T, structure/object (n € Nat)
T, Ts 2 Ty T5 Ty Kamin's self-application
Operator | Associate | Priority
_ Left >
- < - Right >
_—> _ Right >
., Right >

64— ESSLLI-2004, Nancy

The rewriting calculus

The untyped rewriting calculus

Matching Equations and Solutions

1. A match equation is a formula of the form T7<T5.

2. A matching system T2 | 6\ T;=<<T is a conjunction of match equations,
1=VU...MN

where A is associative, commutative, and idempotent.

3. A matching system T is successful if it is empty or:
(a) has the shape A Xi<T; AN K;j=<Kj;

1=0...n 7=0...m

(b) for all b,k =0...n, such that h # k, we have X # Xj:

4. A substitution o = {T1/X,---T,/X,} is the solution of a successful matching
system T. The set of solutions of T is denoted by Sol(T).

65— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Reduction relies on matching power

Matching is parametrized over a theory T and an order < on substitutions

SOZ(Tl«TTQ) = O01y.-+50p,...

O < SOZ(Tl«TTQ) = T O'(Tl) =75

o1 < ...= 0y, (n < 00)

THEORIES ALGORITHM

66— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

The Small-step Reduction Semantics

(P—-A)B —, [P<KBJA
[P < B]A v A(g(p*«B) it 46. P0 —T B

(A,B)C — AC,BC

67— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

The Small-step Reduction Semantics

(P—DA)B — [P<<B]A

P < B|A —, A64,...,A0,,...
with {61,...,0,,...} = Sol(P=<1B)

(A,B)C — AC,BC

68— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Intuition on the small-step Semantics

(P—-A)B —, [P<B|A
—. A6
if 30. P60 =1 B

(P—-A)B —, [P<BJA
STOP!
if A0. PO =1 B

69— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-reductions

70— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-reductions

70— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-reductions

70— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—=b)a s

(f(X,Y) = g(X,Y)) (f(a,0))

(f(X,Y) = g(X,))) (9(a,b))

(a = b,a—c) a

70— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—b)a —s b

(f(X,Y) = g(X, D)) (f(a,b)) = [(X, D) < fla,0)|g(X, D) = g(a, D)

(f(X,Y) = g(X,Y)) (g9(a,b))

(a = b,a—c) a

70— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—b)a —s b

(f(X,Y) = g(X,Y)) (f(a,b))
= |f(X,Y) < fla,0)]g(X,Y) s gla,b)

(f(X, V) = g(X,))) (9(a, b)) = (X, D) < gla,b)]g(X,)

(a = b,a—c) a

70— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Some p-reductions

(X = X) a —s G
(X = (X X)) (X = (X X)) s W W s .
(a—b)a —s b

(f(X,Y) = g(X,Y)) (f(a,b))
= |f(X,Y) < fla,0)]g(X,Y) s gla,b)

(f(X,Y) = g(X,Y)) (g9(a,b)) = [f(X,Y) < gla,b)lg(X, D)

(@ —=>b,a—c)a +p (a—=b)a,(a—c)arusbc

70— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Simple Success Reduction

(f(X) = 3 —=3)X) fB) = LX) <FB)B—=3) X)

71— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Simple Success Reduction

(f(X) = 3 —=3)X) fB) = LX) <FB)B—=3) X)

(f(X) = B =3)X) F(3) = (f(X) = [3<X]3) f(3)
p LX) < OB < X)3)

71— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Simple Failure Reduction

(f(X) = B =3)&) f(4) = [f(&) < fHAIB —3) &)
— (3 —3) 4

— |3 <43

72— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Simple Failure Reduction

(f(X) = 3 —=3)X) f(4) = F(X)<FEIE—=3) L)
— (3 —+3)4
. [3< 43

(f(X) = B =3)&) f(4) = (f(X) = [3<X]3) f(4)
— [f(X) < fA]([3 < X]3)
— |3 < 4]3

72— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

On the (non-)confluence

Variables in applicative position

(XY — X)((Z — Z)a)

pc;/ \Fas
XY < (2 — Z)alX (XY — X)([Z2 <a]Z)
ob | | oo
Z -+ Z (XY — X)a

73— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

On the (non-)confluence

Non-linear patterns
C rec—-9S — X — (d(Y,Y) = e) d(X,Srec X)

A rec. — S' — C.rec S".rec

> 1>

74— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

On the (non-)confluence

Non-linear patterns

C 2 rec»S—-X—(dY,Y)—e)dX,SreX)

A 2 red -8 —CrecS'.rec

A.rec A.rec

— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)

74— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

On the (non-)confluence

Non-linear patterns

C 2 rec»S—-X—(dY,Y)—e)dX,SreX)
A 2 red -8 —CrecS'.rec
A.rec A.rec
— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)
Iﬁ?mg é
and

Crece— (d(Y,Y) —e) d(e,C.rec e)

74— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

On the (non-)confluence

Non-linear patterns

C 2 rec—8—X—(dY,Y)—e)dX,SrecX)
A 2 red -8 —CrecS'.rec
A.rec A.rec
— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)
5 €
and

Crece— (d(Y,Y) —e) d(e,C.rec e)

and e and C.rec e have no common reduction (by induction on the supposed
length of a reduction from C.rec e to e).

74— ESSLLI-2004, Nanc The rewriting calculus The untyped rewriting calculus
y

On the (non-)confluence

Non-linear patterns

C 2 rec—8—X—(dY,Y)—e)dX,SrecX)
A 2 red -8 —CrecS'.rec
A.rec A.rec
— C.rec A.rec s C.rec A.rec
—(d(Y,Y) = e) d(A.rec’,C.rec A.rec’) — C.rec e
—5(d(Y,Y) = e) d(C.rec A.rec’,C.rec A.rec)
5 €
and

Crece— (d(Y,Y) —e) d(e,C.rec e)

and e and C.rec e have no common reduction (by induction on the supposed
length of a reduction from C.rec e to e).

Rigid Pattern Condition (RPC) [van Oostrom 90]
PE{T € NF(pod) | T is “linear” with no “active” variables}

74— ESSLLI-2004, Nanc The rewriting calculus The untyped rewriting calculus
y

Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy

75— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
% K|T-T|KT|T,T
O == V|wrong| 0,0

75— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
V w= K| T -T|KT|T,T
O == V]wrong| 0,0

e The special output wrong represents the result obtained by a computation
involving a “matching equation failure”

75— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
V w= K| T -T|KT|T,T
O == V]wrong| 0,0

e The special output wrong represents the result obtained by a computation
involving a “matching equation failure”

e The semantics is defined via a judgment of the shape 7 || O

75— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Operational Semantics

e Natural proof deduction system a la Kahn

e Map every closed expression into a term in weak head normal form

e We present a lazy call-by-name strategy
V w= K| T -T|KT|T,T
O == V]wrong| 0,0

e The special output wrong represents the result obtained by a computation
involving a “matching equation failure”

e The semantics is defined via a judgment of the shape 7 || O

e The big-step is deterministic, and immediately suggests how to build an
interpreter for the calculus;

75— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Natural Semantics |

VIR, (Red—Val)

76— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Natural Semantics |

VIR, (Red—Val)

T TL—-17, L<hT|0
71O

(Red—p1)

76— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Natural Semantics |

VIR, (Red—Val)

T TL—-17, L<hT|0
71O

(Red—p1)

L7377y T30, 1| O
7’17'2U’01702

(Red—9)

76— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Natural Semantics ||

do.o(T1) =7, o(73) 1 O
T <D0

(Red—al)

77— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Natural Semantics ||

Jdo.o(Th) =7, o(T3)| O
T <D0

(Red—al)

fo. o(717) = 75
T, < T,|T; | wrong

(Red—ag)

77— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Big-step Natural Semantics ||

Jdo.o(Th) =7, o(T3)| O
T <D0

(Red—al)

fo. o(717) = 75
T, < T,|T; | wrong

(Red—ag)

7, || wrong
T, Ty | wrong ¢

—p2)

77— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

p-ample: Two Natural Deductions

Take the term (f(X) — (3 — 3)X) f(3).
o=1{3/X) (333103
LX) < FB3)B = 3)X 3
(f(X) = (3—=3)X) f(3) |3

with *x = (f()() —> (3 —> 3).)() U (f(.)() —> (3 —> 3).)()

78— ESSLLI-2004, Nancy The rewriting calculus

The untyped rewriting calculus

p-ample: Two Natural Deductions

Take the term (f(X) — (3 — 3)X) f(4)
Jo. 0(3) =4
oc={4/X} (3 —3)4 | wrong
* [f(X)< f(4)](3—3)X | wrong
(f(&X) = (3 = 3)&) f(4) I wrong

with *x = (f()() —> (3 —> 3).)() U (f(.)() —> (3 —> 3).)()

78— ESSLLI-2004, Nancy The rewriting calculus

The untyped rewriting calculus

The Rationale of Optimistic and Pessimistic Machines

Optimistic machine tracks the fact that one computation goes wrong.

(3 -+ 3,4 —+4)4] wrong, 4

79— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

The Rationale of Optimistic and Pessimistic Machines

Optimistic machine tracks the fact that one computation goes wrong.

(3 -+ 3,4 —+4)4] wrong, 4

e Pessimistic machine “kills” the computation once a wrong value is produced

(3—»3,4—»21)4Uwrong

79— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

The Rationale of Optimistic and Pessimistic Machines

Optimistic machine tracks the fact that one computation goes wrong.

(3 -+ 3,4 —+4)4] wrong, 4

e Pessimistic machine “kills” the computation once a wrong value is produced

(3—»3,4—»21)4Uwrong

e Optimistic machine (at least one computation does not go wrong), vs.
Pessimistic machine (the machine stops if at least one wrong occurs).

79— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Why a new calculus?

Rewriting is nice, but

e the rewrite relation or the rewriting logic are difficult to control

e non-reducibility is impossible to express

80— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Why a new calculus?

Rewriting is nice, but

e the rewrite relation or the rewriting logic are difficult to control

e non-reducibility is impossible to express

Lambda-calculus is great, but

e lacks of discrimination capabilities

e difficult to control

80— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,
e rules are first class object

e application is explicit

e decision of redex reduction is explicit

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object
e application is explicit
e decision of redex reduction is explicit

e matching is a main explicit parameter

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit
e matching is a main explicit parameter

e results are first class

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit
e matching is a main explicit parameter

e results are first class

This allows for advanced calculi,

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit

e matching is a main explicit parameter

e results are first class

This allows for advanced calculi,

e with explicit constraints (and substitutions),

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

A calculus with more explicit features

Like for explicit substitution calculi, explicitation of all the ingredients is useful.

In “basic” rewriting calculus,

e rules are first class object

e application is explicit

e decision of redex reduction is explicit
e matching is a main explicit parameter

e results are first class

This allows for advanced calculi,

e with explicit constraints (and substitutions),

e that can dissociate binding from matching when abstracting

81— ESSLLI-2004, Nancy The rewriting calculus The untyped rewriting calculus

Comparing the untyped
rewriting calculus to other
ormalisms

Target formalisms

[l Rewriting

1 A-calculus

[0 Higher-order term rewriting (CRS)

[0 The Lambda Calculus of Objects A\Obj

[I The Object Calculus ¢Obj

83— ESSLLI-2004, Nancy The rewriting calculus Expressiveness of the rewriting calculus

Compiling the \-calculus into the p-calculus

1. p(X) =X
2. p(AX.M) = X — (M)
3. (M N) = (M) ¢(N)

Theorem: If M —p3 N, then (M) 5 (V).

84— ESSLLI-2004, Nancy The rewriting calculus Comparing to A-calculus

Compiling the \-calculus into the p-calculus

1. p(X) =X
2. p(AX.M) = X — (M)
3. (M N) = (M) ¢(N)

Theorem: If M —p3 N, then (M) 5 (V).

Example: for Turing's fixpoint combinator [Turing37]
Oy = (Ax A)) where A\ = Azxy.y(xzy)
we have p(Ay) =2 — (y — y (z = y)) and thus, to the A-reduction
O\ G —3 G(O) G)

corresponds the following reduction in the rewriting calculus

OGE(z—-(y—»yzzy)) AG—msly—y(AAY) G—sG(AAG)

84— ESSLLI-2004, Nancy The rewriting calculus Comparing to A-calculus

Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:

85— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:

The rewrite relation :
t —pt

I.e. the smallest relation containing the rewrite rules and stable by context et
substitution.

85— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Rewriting: The relation, the logic and the calculus

Given a set R of labeled rewrite rules ([¢;] I; — r;), we can define:

86— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Rewriting: The relation, the logic and the calculus

Given a set R of labeled rewrite rules ([¢;] I; — r;), we can define:

The rewriting logic [José Meseguer, TCS51992]:

REt=1

86— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Rewriting: The relation, the logic and the calculus

Given a set R of labeled rewrite rules ([¢;] I; — r;), we can define:

The rewriting logic [José Meseguer, TCS51992]:

REt=1

Formulas are sequents of the form
Tt =1

where 7 is a proof term, built on FU L U {; } recording the proof of the sequent.

86— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Rewriting: The relation, the logic and the calculus

R EF m:t=1

if m:¢ = t' can be obtained by finite application of the following rules:

Reflexivity For any t € T (F):

t :t=>1
Transitivity
T U1 = 19 To 19 = 13
T, 11 = 13

87— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Congruence For any f € F with arity(f) = n:

™ o t=>t ... w, it =t

n

flry, o ooomn) 2 f(t, .) = f(ﬁ,...,t,’n)

Replacement For any ¢ : [(zy1,...,2,) = r(x1,...,2,) € R,

™ o th=t ... w, ity =t

n

E(?Tl,...,ﬂ'n) Zl(tl,...,tn) :>7“(t/1,...,t,’n)

88— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:

89— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Rewriting: The relation, the logic and the calculus

Given a set R of rewrite rules (I; — r;), we can define:

The rewriting calculus :

(Imim(R) t) o t

89— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Going from rewrite rule to rewriting system:

N——"

r,y) — I

x,b) — b

—N—
~

90— ESSLLI-2004, Nancy

For the rewriting reduction

{f(fﬁ,y)%fﬂ}
e
—R b

|

b = b

The rewriting calculus

Non Determinism

Comparing to rewriting

Going from rewrite rule to rewriting system:
In the p-calculus

f(X,)Y)— X f(X,b) —b

91— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Going from rewrite rule to rewriting system:
In the p-calculus

f(X,)Y) — X, f(X,b) —b

91— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Going from rewrite rule to rewriting system:
In the p-calculus

FIX,Y) = X, f(X,b)—b fla,b)

91— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Going from rewrite rule to rewriting system:
In the p-calculus

(FXY) =X, f(XB)=b) flab)

91— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Going from rewrite rule to rewriting system:
In the p-calculus

(FXY) =X, f(XB)=b) flab)

U (f(X,Y) = X) fla,0), (f(X,b) —b) f(a,b)

91— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Going from rewrite rule to rewriting system:
In the p-calculus

(f(X, V) X, f(X,b) - b) f(a,b)
0 (f(X,Y) = X) f(a,b), (f(X,b) —=b) f(a,b)

0 (a,b)
Encoding Rewriting

91— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Encoding Rewriting

Starting from the proof term, a corresponding p-term is obtained:

Theorem: If T 7 15, then 3 T’z such that T’z T’ 5 15.

92— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Encoding Rewriting

Starting from the proof term, a corresponding p-term is obtained:

Theorem: If T 7 15, then 3 T’z such that T’z T’ 5 15.

Example:
Given R={(1:a=0,02:c=d,03: f(x,h(y)) = f(y,h(x))} we have:

3(g(£1),£2) : f(g(a), h(c)) = f(d, h(g(b)))

and in rewriting calculus

(f (@, h(y)) = f((c = d) y,h((g(2) = (a = D) 2) x)))) f(g9(a), h(c)) s f(d, h(g(b)))

Staring from a given system of rewrite rules reduction strategies can be encoded

(using p-.)
Encoding Rewriting

92— ESSLLI-2004, Nancy The rewriting calculus Comparing to rewriting

Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.

93— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.
App([a]Z(x), 2) = Z(2) (Aa.t)u =g t{a/u)
App(a]f(2). a) (a.f) a

93— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.

App([2]Z(x), 2') = 2(2") (a.t)u =g te/u)
App([z]f(z),a) (Az.f) a
Reduction : ol —cRrs R

93— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.

App([a]Z(x), Z') = 2(2") (a.t)u =g te/u)
App([z]f(z),a) (Az.f) a
Reduction : ol —cRrs R

oc={(Z, \y.fy),(Z',a)}
oL = o(App(|x]Z(x), Z")) = App([z](\y-fy)(x),a) | s= App(|z]f(z),a)
ocR=0(Z(Z") = (M\y.fy)(a) lg= f(a)

93— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

Representation of Higher-order term rewriting (CRS)

[1 Higher-order term rewriting = Term rewriting+ Lambda calculus
[Breazu-Tannen, Gallier88],[Okada89],[Klop80],[Nipkow91]

[1 CRS versus TRS: abstraction and metavariables.

App([a]Z(x), Z') = 2(2") (a.t)u =g te/u)
App([z]f(z),a) (Az.f) a
Reduction : ol —cRrs R

o ={(Z,\y.fy),(Z',a)}
oL = o(App([z]Z(x) Z')) = App([z](Ny.fy)(z), a) |g= App(|z]f(x), a)
ocR=0(Z(Z") = (\y.fy)(a) |s= f(a)
App([z]f(x),a) —crs fla) (Az.f) a —p f{z/a}

N—"

93— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

Translation of CRS in the p-calculus
e Metaterms :
2] =
Lt t)] = f([E]s - [En])
[[z]t] = = — [t]

]
[Z(t1, .. tn)] = Z [ta] ... [tn]

Example

94— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

Translation of CRS in the p-calculus
e Metaterms :
2] =
[/t t)] = ([t - [En])
[[z]t] = = — [t]
|2ty stn)l = Z (6] - (2]

e Rewriting rules : [L = R] = [L] — [R]

e Assignment : [{...,(Z;,&),..- =1 ..,Z/[&], ...}

e Substitute @ [Azy...z,.u] = 1= (x2—(. .. (2, — [u])...))

Example

94— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

Representation of Higher-order term rewriting (CRS)
e Definition of the pq-calculus (HO matching theory)

e Translation of CRS-components into RHO-terms

e Correction and completeness of the translation

Theorem: If T} —px 15 ... —xr 1T}, then 3 U,, ... U; such that every
correspondent RHO-derivation terminates and converges to 1),

Un(... (U T1)) : . T,

95— ESSLLI-2004, Nancy The rewriting calculus Comparing to higher-order rewriting

p-calculus and records

Record = structure composed of rewriting rules, i.e.:

(Tt 2 Ty,...,T, (ne Nat)
m; =Ty €T = (m; — T)'€’

|| >

lcx =0, cy = 0] (cx — 0,cy — 0)

96— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

p-calculus and records

Record = structure composed of rewriting rules, i.e.:

(Tt 2 Ty,...,T, (ne Nat)
m; =Ty €T = (m; — T)'€’

|| >

lcx =0, cy = 0] (cx — 0,cy — 0)

Record selection = the application of the record to the label, 7.e. T71.1T5 as 17 15.

(cx = 0,cy = 0) cx 5 (cx —0) cx,(cy = 0) cx
— 0, [cy < cz]0
=1 (0,stk) =1 0 (T.on) .. . the matching theory

96— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!

97— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!

Self-application = the application of an object to the object itself, 7.e.

|| >

11.15 1y 15 T

97— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!

Self-application = the application of an object to the object itself, 7.e.

|| >

11.15 1y 15 T

Ex: T2a =S8 —=b. Then: T.a2T aT 5 (S—b)T s b

97— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

p-calculus and objects

Object = record with an explicit account of self, i.e.

m; = (X)) €T 2 (my — X — T;)€!

Self-application = the application of an object to the object itself, 7.e.

|| >

11.15 1y 15 T

Ex: T2a =S8 —=b. Then: T.a2T aT 5 (S—b)T s b

Ex T2w — S — S.w. Then: T.w = (S = Sw) T s Tw e

97— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

A “ping-pong”’ object
Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:
T'.ping 2 T ping T

98— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)
Then:
T'.ping 2 7 ping T
—ps ((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T

98— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)
Then:
T'.ping 2 7 ping T
—ps ((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
—s (S — S.pong),stk) T

98— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)
Then:
T'.ping 2 7 ping T
—ps ((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
—s (S — S.pong),stk) T
—s (S — S.pong) T, stk T

98— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:

98— ESSLLI-2004, Nancy

T'.ping

o
P
o

T ping T

((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
((S — S.pong),stk) T

(S — S.pong) T,stk T

(S — S.pong) T, stk

The rewriting calculus

Comparing to object calculi

A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:

98— ESSLLI-2004, Nancy

T'.ping

o

o

)

)
=T

T ping T

((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
((S — S.pong),stk) T

(S — S.pong) T,stk T

(S — S.pong) T, stk

(S — Spong) T (Teeny)

The rewriting calculus Comparing to object calculi

A “ping-pong”’ object

Let T2 (ping — S — S.pong, pong — S — S.ping)

Then:

98— ESSLLI-2004, Nancy

T'.ping

T ping T

((ping — S — S.pong) ping,
(pong — S — S.ping) ping) T
((S — S.pong),stk) T

(S — S.pong) T,stk T

(S — S.pong) T, stk

(S — Spong) T (Toon)
T.pong

T.ping

The rewriting calculus

Comparing to object calculi

Functional object update

Update (a.m :=b) 2 (a,m — b)

99— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Functional object update

Update (a.m :=b) 2 (a,m — b)

Point val — S — v(1,1),

get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

99— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Functional object update

Update (a.m :=b) 2 (a,m — b)

|| >

Point val — S — v(1,1),

get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

Then:

Point.get s v(1,1)

99— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Functional object update

Update (a.m :=b) 2 (a,m — b)

Point

val — S — v(1,1),
get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

Then:

Point.get s v(1,1)
Point.set(v(2,2)) s Point, (val - S" — v(2,2))

99— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Functional object update

Update (a.m :=b) 2 (a,m — b)

Point

val — S — v(1,1),
get — S — S.val,
set - S = v(X,Y) — (Swal := 5" — v(X,Y))

Then:

Point.get s v(1,1)
Point.set(v(2,2)) s Point, (val - S" — v(2,2))
Point.set(v(2,2)).get s v(1,1),0(2,2)

99— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Imperative object update

Kll,, rule:

|| >

kill,, (m — X,Y) —»Y (in Tcony)

100- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update (a.m :=b) 2 (kill,,(a), m — b)

100- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update (a.m :=b) 2 (kill,,(a), m — b)

Then:

Pointr.get s v(1,1)

100- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update (a.m :=b) 2 (kill,,(a), m — b)

Then:

Pointr.get s v(1,1)
Pointr.set(v(2,2)) s val = S — 0(2,2),get — ... set — ...

100- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Imperative object update

Kll,, rule:

kill,, 2 (m—X,Y)—Y (in Tcony)

Update (a.m :=b) 2 (kill,,(a), m — b)

Then:

Pointr.get s v(1,1)
Pointr.set(v(2,2)) s val = S — 0(2,2),get — ... set — ...
Pointr.set(v(2,2)).get s v(2,2)

The Object Calculus cObj
The Lambda Calculus of Objects A\Obj

100- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n

101- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n

—s (ti,n— 8 — 1) .n

to

101- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n

—s (ti,n— 8 — 1) .n

to

é tgntQ

101- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(tr.addyp)m s (S = (S,n— 85" — 1)) t1).n
—s (ti,n— 8 — 1) .n

~~

to

é tgntQ

—w ((add, — ...) n,(n = S"— 1) n) ty

101- ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(t1.add,).n

101- ESSLLI-2004, Nancy

'
7

|| >

T
P

(S —= (S,n —- 8" — 1)) t1).n

(ti,n = 8" —1).n

to

tgntQ

((add, — ...) n,(n — S" — 1) n) ty

stk, (S/ —> 1) to

The rewriting calculus

Comparing to object calculi

An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(t1.add,).n

101- ESSLLI-2004, Nancy

'
7

|| >

T
P

(S —= (S,n —- 8" — 1)) t1).n

(ti,n = 8" —1).n

~~

t2
t2 n t2

((add,, —

stk, (S/ —> 1) to

(S/ —> 1) t2

The rewriting calculus

(Tcon)

) n,(n—-8 —=1)n)ty

Comparing to object calculi

An object with “self-extension”

Let t1 = add, — S — (S,n — 5" — 1)

(t1.add,).n

101- ESSLLI-2004, Nancy

'
7

|| >

(S —= (S,n —- 8" — 1)) t1).n

(ti,n = 8" —1).n

~~

t2
t2 n t2

((add,, —

stk, (S/ —> 1) to

(S/ —> 1) t2
1

The rewriting calculus

(Tcon)

) n,(n—-8 —=1)n)ty

Comparing to object calculi

Inheritance in the p-calculus
(Abadi & Cardelli encoding of classes-as-objects)

PClass 2 new — S — (val — S’ — (S.preval) S,
get — S" — (S.preget) S’,
set — S" — (S.preset) S’),
preval — S — S — v(1,1),
preget — S — S’ — S"val,
preset - S — S — v(X,Y) — (S wal := 5" - v(X,Y))

102— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Inheritance in the p-calculus

(Abadi & Cardelli encoding of classes-as-objects)

|| >

PClass

Then:

102— ESSLLI-2004, Nancy

new — S — (val — S" — (S.preval) S’,
get — S" — (S.preget) S’,
set — S" — (S.preset) S’),

preval — S — S — v(1,1),

preget — S — S’ — S val,

preset - S — S — v(X,Y) — (5" val :

PClass.new s Point

The rewriting calculus

— 5" = u(X,Y))

Comparing to object calculi

The Para object: labels as first-class entities
Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

103— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £ Para (par(ten)) Para

103— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £ Para (par(ten)) Para
—s ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para

103— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £ Para (par(ten)) Para
—s ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—» Stk, (S — S.ten) Para

103— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £ Para (par(ten)) Para
—s ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—» Stk, (S — S.ten) Para
=r (S — S.ten) Para (T o))

103— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £ Para (par(ten)) Para
—s ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—» Stk, (S — S.ten) Para
=r (S — S.ten) Para (T o))

D Para.ten

103— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The Para object: labels as first-class entities

Para 2 (ten — S — 10, par(X) - S — S.X)

This object has a method par(X) which seeks for a method name that is assigned
to the variable X and then sends this method to the object itself.

Para.(par(ten)) £ Para (par(ten)) Para
—s ((ten — S — 10) (par(ten)),
(par(X) — S — S.X) (par(ten))) Para
—» Stk, (S — S.ten) Para
=r (S — S.ten) Para (T o))
—s Para.ten

I—»pag 10

103— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The object Daemon: methods as first-class entities

Daemon 2 set — S — X —» (X,set = 85" =Y — (Y, 5))

104— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

2 Daemon set Daemon (x — S — 3)

104— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

2 Daemon set Daemon (x — S — 3)

. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)

104— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

£ Daemon set Daemon (x — S — 3)
. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)
s (X — (X, set = S" =Y — (V,5"))) (x - 5 — 3)

104— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

£ Daemon set Daemon (x — S — 3)
. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)
s (X — (X, set = S" =Y — (V,5"))) (x - 5 — 3)
s =S = 3,5t >S5 Y - (V,5)

obj

104— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The object Daemon: methods as first-class entities

Daemon 2 set — S — X — (X,set - 5" =Y — (V,5))

Daemon.set(x — S — 3)

£ Daemon set Daemon (x — S — 3)
. (S = X = (X,set =S8 =Y — (Y,5))) Daemon (z — S — 3)
s (X — (X, set = S" =Y — (V,5"))) (x - 5 — 3)
s =S = 3,5t >S5 Y - (V,5)

obj

obj.set(y =S —4) 5 (y—> 95 -4, -5 —+3,set -5 =Y — (Y,5))

104— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

The Object Calculus c<Obj

Abstract syntax

a,b = X | [m;=<(X)b]* | am | am :=¢(X)b
Small-step semantics

Let a = [my; = ¢(X)b;]*€!

(Select) am; ~ {X/a}b, (el

(Update) a.m;:=¢(X)b ~ [m; =¢(X)b;,m; = c(X)b's\I} (€1

(Extend) am; :=¢(X)b ~ [m;=c(X)b;,m; =c(X)b]"¢! (7 €1)
105— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

Compiling <Obj in p-calculus

[X] = ¢

a.m;] 2 [a]m,

[i =(X)b) L] & (my — X — [b;])i€!

fom =B 2 [almi=X - [o
Theorem:

If a e Obj b, then [[CL]] I_»@Tg(’)bj [[b]]

Example with object update

106— ESSLLI-2004, Nancy The rewriting calculus Comparing to object calculi

CAL

) &

The new syntax - contexts, etc

T = | T—T Types
A = 0|AXT| A, fir Contexts
P = X|stk| KP (variables occur only once in any P) Patterns
T = K|stk| X |P—=aAT|[PKAT|T|TT|T, T Terms

108— ESSLLI-2004, Nancy The rewriting calculus Typed rewriting calculi

The Type System

F)ﬁigf :F (Start)

109- ESSLLI-2004, Nancy The rewriting calculus Typed rewriting calculi

The Type System

FXILOXE :F (Start)

I'+"7;: I'-"75:
I'E1,75:

(Struct)

109- ESSLLI-2004, Nancy The rewriting calculus Typed rewriting calculi

109— ESSLLI-2004, Nancy

The Type System

ol (Start)

' AX:
I'+"7;: I'-"75:
rE7. T, (Struct)
I'= 7, I'="75:
1F|—T17'2: : (Appl)

The rewriting calculus

Typed rewriting calculi

109— ESSLLI-2004, Nancy

The Type System

ol (Start)

' AX:
I'+"7;: I'-"75:
rE7. T, (Struct)
I'= 7, I'="75:
1F|—T17'2: : (Appl)

I'VAFT: ['VAFT,:
I'ETy —A Ty

(Abs)

The rewriting calculus

Typed rewriting calculi

The Type System

tioel (Start)

' AX:
I'+"7;: I'-"75:
rE7. T, (Struct)
I'= 7, I'="75:
1F|—T17'2: : (Appl)

CAFT 0 TVARTS:
I'ETy —A Ty

(Abs)

I'AFT;: I'="75: I'AFT5:
I'F T Ts

(Match)

109- ESSLLI-2004, Nancy The rewriting calculus Typed rewriting calculi

Typing properties

Well-typed matching:
If Sol(P<<7)=0,thenVX P, T'HFX:0 =TFX6:

Subject Reduction:
If I' =7, : o and 7y 5 T2, then I' = 7o -

Uniqueness:
fI'-7: andI'F7 :), then =~ =,

Decidability:
(typechecking) 1T -7 : 7

(type inference) T+ T : } are decidable.

110- ESSLLI-2004, Nancy The rewriting calculus Typed rewriting calculi

Normalization failure

f: and I' = X : , wef X=X (f X)

w(fw = ([fX—-X(fX))(fw)
— f X < fuwl(X (f X))
= w (f w)

P

111- ESSLLI-2004, Nancy The rewriting calculus Typed rewriting calculi

Normalization failure (cont’d)

f: and I' = X : , wef X =X (f X)
(b)
THf T'FX: I X I'FfX:
b) THf X : '-X (f X):

(Fw=fX =X (f X):
(@)
(a) = f - w
- w : - fw:
Fw (f w):

112— ESSLLI-2004, Nancy The rewriting calculus Typed rewriting calculi

(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)

113- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)

[1 an iteration operator that applies repeatedly a set of rewrite rules,

0w (f w)

113- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)

[1 an iteration operator that applies repeatedly a set of rewrite rules,

0w (f w)

[1 a construction grouping together a set of rewrite rules,

[structures and objects

113- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

(Well-typed) Encoding of Rewriting in the p-calculus

[] rewrite rules and their application,

[J p-abstractions and applications (Simple Encoding)

[1 an iteration operator that applies repeatedly a set of rewrite rules,

0w (f w)

[1 a construction grouping together a set of rewrite rules,

[structures and objects

[1 an operator testing if a set of rewrite rules is applicable to a term.

[1 the symbol stk

113- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

p-calculus and objects

e Object = record with an explicit account of self, i.e.

mi = (X)) 2 (me(Xy) — ¢;)"€!

114— ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

p-calculus and objects

e Object = record with an explicit account of self, i.e.

mi = (X)) 2 (me(Xy) — ¢;)"€!

e Self-application = the application of an object to the object itself, i.e.

tita =ty tatr)

114— ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

p-calculus and objects

e Object = record with an explicit account of self, i.e.

mi = (X)) 2 (me(Xy) — ¢;)"€!

e Self-application = the application of an object to the object itself, i.e.

tita =ty tatr)

e Ex: t£a(S) - b. Then: t.a2t a(t) —, [a(S) < a(t)]b 4 b

114— ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Typed objects

e An object has type:

S : = meth :
= meth(S) : (Appl) = Toneth
= meth(S) = Tmeth

(Abst)

115— ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Typed objects

e An object has type:

S : = meth :
= meth(S) : (Appl) =T oth
= meth(S) = Tmeth

(Abst)

o obj.meth 2 obj meth(obj) can be typed as follows:

~ meth : ~ obj :
= obj : - meth(obj) :
- obj meth(obj) :

115— ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Detecting matching failures: the symbol stk

1. The relation P [Z A detects (some) definitive matching failures:

f Z g
f(An) & B if (B=g(Bm),f#g) V (B=f(Bn),3i,A; £ B;)
P 7 A ifA=([Q< A1JAsAQZ ALV P IZ Ay)

116— ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Detecting matching failures: the symbol stk

1. The relation P [Z A detects (some) definitive matching failures:

f Z g
f(An) & B if (B=g(Bm),f#g) V (B=f(Bn),3i,A; £ B;)
P 7 A ifA=([Q< A1JAsAQZ ALV P IZ Ay)

2. The relation —y treats matching failures uniformly:

P < A|B — stk it PIZA
Stk, A —2tk A
A, Stk —&tk A

stk A —y stk

Theory of Stuck Ts Encoding Rewriting

116— ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Encoding rewriting - Addition over Peano integers

A S—Dadd(,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add(,y))

117- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Encoding rewriting - Addition over Peano integers

A S—Dadd(,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add(,y))

(plus plus) add(", M)

—s | << VM, [<K [(M+1) - [< UJ(M+N), [suc m <]...
—s stk, stk -+ [0 K UJ[(M+N), stk...
stk M‘|‘N

117- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Encoding rewriting - Addition over Peano integers

A S—Da,dd(,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add(,y))

(plus plus) add(", M)

—s | << VM, [<K [(M+1) -+ [0 K J(M+N), [suc » <]...
—s stk, stk -+ [0 K UJ[(M+N), stk...
stk M+ N

Fill in the blanks with your favorite rewrite system...

S — :
S — (S 5)

func =

117- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Encoding rewriting - Addition over Peano integers

A S—Da,dd(,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add(,y))

(plus plus) add(", M)

—s | << VM, [<K [(M+1) -+ [0 K J(M+N), [suc » <]...
—s stk, stk -+ [0 K UJ[(M+N), stk...
stk M+ N

Fill in the blanks with your favorite rewrite system...

fune 2 [S len([]) = 0
S — len(Cons(z,1)) — suc((S S) len(l))

117- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Encoding rewriting - Addition over Peano integers

A S—Dadd(,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add(,y))

(plus plus) add(", M)

—s | << VM, [<K [(M+1) - [< UJ(M+N), [suc m <]...
—s stk, stk -+ [0 K UJ[(M+N), stk...
stk M‘|‘N

Fill in the blanks with your favorite rewrite system... provided it is convergent and
ground reducible if you want completeness.

fune 2 [S len([]) = 0
S — len(Cons(z,1)) — suc((S S) len(l))

117- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Encoding rewriting - Addition over Peano integers

A S—Dadd(,y)_>y7
plus =
S — add(suc(),y) —» suc((S S) add(,y))

(plus plus) add(", M)

—s | << VM, [<K [(M+1) - [< UJ(M+N), [suc m <]...
—s stk, stk -+ [0 K UJ[(M+N), stk...
stk M‘|‘N

Fill in the blanks with your favorite rewrite system... provided it is convergent and
ground reducible if you want completeness.

fune 2 [S len([]) = 0
S — len(Cons(z,1)) — suc((S S) len(l))

117- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Encoding rewriting in the p-calculus

1. The following operator selects the first applicable rule of a set:

first(A, Ag, ..., A)) 2

X — ((stk = A, X, I) (... (stk > Ay X, 1) (A X)))
first(Ar, A, ..., A)) B s Aji1 B if Vi < j, A; B g stk

and Aj_|_1 B /L»pag stk

118- ESSLLI-2004, Nancy The rewriting calculus

Encoding Rewriting

Encoding rewriting in the p-calculus

1. The following operator selects the first applicable rule of a set:

first(A, Ag, ..., A)) 2

X — ((stk = A, X, I) (... (stk = Ay X, I) (A1X)))
first(A1, Ao, ..., AN) B s Ajp B if Vi < g, A; Brogsstk and Aj 1 B fop stk

2. The Term Rewrite System R = { } with signature {a;} is encoded by:
— S (rec 9)

Y

R ~ (recS) — first

.Y’—D S (Rec S) (v S(rec S) X), |’

)

— S (rec S) -,
(Rec S) — first [-+,
I

118- ESSLLI-2004, Nancy The rewriting calculus

Encoding Rewriting

Example - A simple calculator

(addOY—»Y, \

add (suc X)Y — S.rec (suc (add X Y)),
mult 0Y — 0,

calc = rec(S) — first | mult (suc X)Y — S.rec (add (mult X Y) X),
add X Y — S.Rec (add (S.rec X) (S.recY)),

mult X' Y — S.Rec (mult (S.rec X) (S.recY)),
\ suc X — S.Rec (suc (S.rec X))

(addOY—»Y, \

add (suc X)Y — S.rec (suc (add X Y)),
Rec(S) — first | mult0Y — O,

mult (suc X)Y — S.rec (add (mult X Y) X),

| ¥y /

Computing (3 +5) x 4

O cale.rec (mult (add 3 5) 4) s

2.

119- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Example - Computing the length of a list

. len nil — 0,
length = recS — first | len (cons X L) — S.rec (suc (len L)) , :
suc X — S.Rec suc (S.rec X)
len nil — 0
Rec S — first | len (cons X L) — S.rec (suc (len L)),
Y - Y

120- ESSLLI-2004, Nancy The rewriting calculus Encoding Rewriting

Logical inconsistency

e As is, the Curry-Howard isomorphism is not valid:

' AFT;: I'AFT:
I'=71 —aTs:

T Ao T,AF
T F

(Abs)

121- ESSLLI-2004, Nancy The rewriting calculus Type systems

Logical inconsistency

e As is, the Curry-Howard isomorphism is not valid:

' AFT;: I'AFT:
I'=71 —aTs:

T Ao T,AF
T F

(Abs)

- (hJ_—Doz—voc(X_L) > XL) :
e Thus, for instance, - (h-727%(X+) - X+) (Y - Y9)

121- ESSLLI-2004, Nancy The rewriting calculus Type systems

Logical inconsistency

e As is, the Curry-Howard isomorphism is not valid:

' AFT;: I'AFT:
I'=71 —aTs:

T Ao T,AF
T F

(Abs)

- (hJ_—Doz—voc(X_L) > XL) :
e Thus, for instance, - (h-727%(X+) - X+) (Y - Y9)

e How to fix it ?

P,XZQOZFB
I['-A— B:

(Abs) , FV(A)={X""}

1

121- ESSLLI-2004, Nancy The rewriting calculus Type systems

Dependent type discipline

I'' A\ FT1;: I'AFT5:
'E71: A =75

(Abs)

I'-7;: I'E75:
I'-77 75 :

(Appl)

I'AFET,
CE(7Ty:A)—=Ty: (171 A)

(Abs)

I'+"7;: I'E75: F,Al—’]'ll:a(A 3
T-T7 Tz A bp

122— ESSLLI-2004, Nancy The rewriting calculus Type systems

POPL-03

P TS

Motivations and Contributions

Small “A-Digression”

124— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

(AX.X) 3

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(AE(X),8(Y)).(X,Y))(3,4)

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(A (sar(X), trl(X)) .headof (X)) (sqr(wood),trl(wood))

VO VO
pattern argument

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(A (sar(X), trl(X)) .headof (X)) (sqr(wood),trl(wood))

VO VO
pattern argument

e Rewriting-calculus builds upon generalised abstraction:

A(OP.Q).M) N_

pattern arg

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

From Lambda-calculus to Rewriting-calculus

e Lambda-calculus builds upon lambda abstraction:

3

e Lambda-calculus with patterns builds upon pattern abstraction:

(A (sar(X), trl(X)) .headof (X)) (sqr(wood),trl(wood))

VO VO
pattern argument

e Rewriting-calculus builds upon generalised abstraction:

A(OX.Y).Y 3)(\Z.Z)

pattern arg

125— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

PAT TERNS

We Want More Patterns!

Pattern Power!

126— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Uncle Pat

FOR U S.ARMY

NEAREST RECRUITING STATION

127— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

MATCHING

We Want More Matching!

Matching Power!

128- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Lady Match

129— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Notational Convention

Capital letters, like A, B,C, ... range over general terms (metavariables)
Capital letters, like X,Y, Z, ... range over variables

Small letter, like a,b, ..., f,... and strings like car, cons,nil,int, ... range
over constants

The application of a constant function, say f, to a term A will be usually
denoted by f(A), following the algebraic “folklore”

We can “curryfy” in order to denote a function taking multiple arguments, e.g.
f(Al"'An)éfAl A

Fact: Mixing term rewriting and lambda calculus is a longstanding “shambles”:
many proposals, many solutions, many problems, ...

130- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Tricky !

e Quiz: ... the below term can have free variables 7

Acons(T X nil(T)) .cons(T X cons(T X nil(T))
— ‘

pattern

131- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Tricky !

e Quiz: ... the below term can have free variables 7

Acons(T X nil(T)) .cons(T X cons(T X nil(T))
— ‘

pattern

e yes, and we can even abstract over the variable T’

AT Acons(T' X nal(T)).cons(T X cons(T' X nil('T)))

131- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Tricky !

e ... we will explain why we cannot reduce

(Acons(T X nil(T)) .cons(T" X cons(T X nil(1))))

pattern

cons(int 3 nil(int))
argar?lent

132— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Tricky !

e ... we will explain why we cannot reduce

(Acons(T X nil(T)) .cons(T" X cons(T X nil(1))))

pattern

cons(int 3 nil(int))
argar?lent

e ... but we can reduce

A Jt;l,.Agans(T 2{ nil(1")) .cons(1" X cons(1" X nil(1)))
pa patt2

ant, cons(int 3 nil(int))
argl arg2

132— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

TYPES

We Need to Plug Types!

133— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Thanks to TAL’s Group (Cornell)

134— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

135— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

135— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)

135— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)

e We develop the basic theory of the resulting framework which we call

Pure Pattern Type Systems
(P'TS)

135— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)

e We develop the basic theory of the resulting framework which we call

Pure Pattern Type Systems
(P'TS)

e This is not as straightforward as one may imagine

135— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Typed Rh

e Our goal is to use the Rewriting-calculus as a foundation for proof assistants
based on Curry-Howard isomorphism a la Coq, Twelf, Lego, . ..

e As an intermediate goal, we develop a dependent type theory for the
Rewriting-calculus

e We do so by extending the framework of Pure Type Systems (PTS)

e We develop the basic theory of the resulting framework which we call

Pure Pattern Type Systems
(P'TS)

e This is not as straightforward as one may imagine Z—)

135— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Free Unrestricted Patterns

Plaetora of Serious Problems

136— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Problems

e Confluence can fails for bad patterns

(\ ();;{) X)(\Z.Z) a) s

137- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Problems

e Confluence can fails for bad patterns

(\ @bﬁg X)((\Z.Z) a)(\7.2)

137- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Problems

e Confluence can fails for bad patterns

(\ gbﬁg X)(\Z.Z) a)) (x Y).X) a

137- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Problems

e Confluence can fails for bad patterns

(A @bﬁg X)(\Z.Z) a)) (x Y).X) a

e Subject Reduction can fails for bad patterns

- OVXTT YD) 2T YD) (XET YR
S——— ——
bad patt badarg

137- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Problems

e Confluence can fails for bad patterns

(\ gbﬁg X)(\Z.Z) a)) (x Y).X) a

e Subject Reduction can fails for bad patterns

/2T Yo 2T

137- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Problems

e Confluence can fails for bad patterns

(\ gbﬁg X)(\Z.Z) a)) (x Y).X) a

e Subject Reduction can fails for bad patterns

/2T Yo 2T

e Shapes of good patterns must be synchronized with a sound static type system!

137- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

(A\P.A) B

138- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

(A\P.A) B

e Good Patterns are not occurrence of “active” variables, i.e. the bad pattern

(X A)

138- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

e Good Patterns are not occurrence of “active” variables, i.e. the bad pattern
e Good Patterns are linear, i.e. variables occurs only once, 7.e. the bad pattern

£(X, X)

138- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

A Good Recipes for ... Good Patterns

e Good Patterns are in Normal form (no redexes), i.e. the bad pattern

e Good Patterns are not occurrence of “active” variables, i.e. the bad pattern
e Good Patterns are linear, i.e. variables occurs only once, 7.e. the bad pattern

£(X, X)

e All those recipes can be formalized, enforced by the syntax, checked at run time
or statically, or by any reasonable mathematical technique....

138- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The main contribution of this (ongoing) work are ...

e to provide adequate notions of patterns, substitutions and syntactic matching
in a typed setting.
We introduce delayed matching constraint, and the possibility for patterns in
abstractions to evolve (by reduction or substitution) during execution

139- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The main contribution of this (ongoing) work are ...

e to provide adequate notions of patterns, substitutions and syntactic matching
in a typed setting.
We introduce delayed matching constraint, and the possibility for patterns in
abstractions to evolve (by reduction or substitution) during execution

e to propose an extension of PTSs supporting abstraction over patterns, and
enjoying

confluence

subject reduction

conservativity over PTSs
consistency for normalizing P T Ss

139- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The main contribution of this (ongoing) work are ...

e to provide adequate notions of patterns, substitutions and syntactic matching
in a typed setting.
We introduce delayed matching constraint, and the possibility for patterns in
abstractions to evolve (by reduction or substitution) during execution

e to propose an extension of PTSs supporting abstraction over patterns, and
enjoying

confluence

subject reduction

conservativity over PTSs
consistency for normalizing P T Ss

e Strong normalization for all P T S is an open problem . . . but it is ok for simple
P T S-types (see Benjamin Wack SN-paper) and it “seems” ok for the simplest
dependent-type discipline (~ Pattern Logical Framework)

139- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

The Syntax

140- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Its time to be uniform!

M.B~ A — B

141- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Typed Syntax

[.= 0| X:A|L, f:A
A:= X|f|P-pAB|AA||[P<aB|C|A,B
IIP:A.B

142— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Typed Syntax

[.= 0| X:A|L, f:A
A:= X|f|P+-AB|AA||[P<aB|C|A,B
IIP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)

142— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Typed Syntax

[.= 0| X:A|L, f:A
A:= X|f|P+-arB|AA||[P<aB|C|AB
IIP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)
2. Term [A <A B]C is a delayed matching constraint

142— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Typed Syntax

[.= 0| X:A|L, f:A
A:= X|f|P-arB|AA||[P<aB|C|A B

ITP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)
2. Term [A <A B]C is a delayed matching constraint
3. Term of the form A, B is called a structure

142— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Typed Syntax

[.= 0| X:A|L, f:A
A:= X|f|P-arB|AA||[P<aB|C|A B
IIP:A.B

1. Term A — A B is an abstraction (resp. product abstraction i.e. IIA:A.B)
2. Term [A <A B]C is a delayed matching constraint

3. Term of the form A, B is called a structure

4. Term of the form IIP:A.B is called a product type

142— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Untyped Rho vs. Typed P TS

Rh

T = VIK|\P-T|TT | PKT|T|T,1

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|vPCT|TT||P<cT|T|T,T

143— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Untyped Rho vs. Typed P TS

Rh

T = VIK|\P-T|TT|\PKT|T|T,1

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|/PCT|TT||P<cT|T|T,T

143— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Untyped Rho vs. Typed P TS

Rh

T = VIK|\P-T|TT|\PKT|T|T,1

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|/PCT|TT||P<cT|T|T,T

143— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Untyped Rho vs. Typed P TS

Rh
T =VIK|P-T|TT||PKT|T|7T,T

PTS
C:=0|C,V:T|CKT ve {11}

T:=V|K|/PCT|TT||P<cT|T|7T,T

143— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Small-step Semantics

144— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —.p B)C

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —> A B)C — [P <A C]B

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —> A B)C — [P <A C]B

—, Bo

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C

(P —.n B)C

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C

(P — A B)C — [P <A C]B

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C

(P — A B)C — [P <A C]B
STOP!

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Reduction@glance

(P —> A B)C — [P <A C]B
—, Bo

if dJo.Ac=C
(P — A B)C — [P <A C]B

STOP!
if Ao.Po=C

145— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Small-step Reduction Semantics

(p) (P-aAaB)C +~, [P<aC].B
(o) [P<KaCl.B BU(P«@AC)

146— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Small-step Reduction Semantics

(p) (P-aB)C +~—, |[P<LaC|.B

(0) [P<aCl.B =y Bopgag

e (p): applying P —a B to C reduces to the delayed matching constraint
P <A C|.B

146— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Small-step Reduction Semantics

(p) (P-aB)C +~—, |[P<LaC|.B

(0) [P<aCl.B BU(P«@AC)

e (p): applying P —a B to C reduces to the delayed matching constraint
P <A C|.B

e (0): run successfully Alg(P«@C), and applying the result 0 to the term B

146— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Small-step Reduction Semantics

(p) (P-aB)C +~—, |[P<LaC|.B

(0) [P<aCl.B BU(P«@AC)

e (p): applying P —a B to C reduces to the delayed matching constraint
P <A C|.B

e (0): run successfully Alg(P«ﬁC), and applying the result 0 to the term B

e (§): deals with the distributivity of the application on the structures built with
the “," constructor One-Many-Congruence-As-Usual

146— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Galleria & Glance

147—- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the)\-abstraction in PTSs. The rationale is:

X —(X.0) A~ AX:0.A
Y

148— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the)\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
ﬂ—/

148— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the)\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
T/

e Instead of simple variables we abstract over sophisticated patterns

e The free variables of A (bound in B) are declared in the context A, i.e.

FVar(A —a B) = (FVar(A)UFVar(B)UFVar(A))\Dom(A)

148— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Galleria |I: The Pattern Abstraction A —, B

e Generalisation of the)\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
T/

e Instead of simple variables we abstract over sophisticated patterns

e The free variables of A (bound in B) are declared in the context A, i.e.
FVar(A —a B) = (FVar(A)UFVar(B)UFVar(A))\Dom(A)
e A discriminates on which FVar(A) will be bound in B and which not

cons(T X nil(T)) ~(X:T) cons(T X cons(T X nil(T)))

148— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Galleria I: The Pattern Abstraction A —5 B

e Generalisation of the)\-abstraction in PTSs. The rationale is:

f(XY) ~(X:0,Y:7) A~MXY): (X0, Y:T)A
T/

e Instead of simple variables we abstract over sophisticated patterns

e The free variables of A (bound in B) are declared in the context A, i.e.
FVar(A —a B) = (FVar(A)UFVar(B)UFVar(A))\Dom(A)
e A discriminates on which FVar(A) will be bound in B and which not

cons(T X nil(T)) ~(X:T) cons(T X cons(T X nil(T)))

148— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Galleria 1l1: The Matching Constraint [A <A B|C

e In the term

A <a B|C

the matching equation [A <A B] is put on the stack, hence constraints and
“de facto” blocks the evaluation of

e The body C will be evaluated (in case a matching solution exists) or delayed
(in case no solution exists at this stage of the evaluation)

e |f a solution exists, the delayed matching constraint self-evaluates to Co,
otherwise the evaluation is delayed to a later stage

e The free variables of A declared in A are bound in B but not in C, i.e.

FVar([A <a B]C)2 FVar((A —a C)B)

149— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Matching Algorithm

Jo. Alg(P=<3A) 7

INSIDE ALGO HARD RUN EASY RUN SKIP

150- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Matching Systems

1. A matching system T2 A PL-«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

151- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Matching Systems

1. A matching system T2 A PL-«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

151- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

151- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

T2 A Xi=xiCi A [i<X f;
¢ 1=0...m J

1=0...n

151- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

@ T2 A Xi<XCi AN fi<X f;

1=0...n 1=0...m
(b) forall h,k=0...n, X; = X implies C, = C
(c) foralli=0...n, X; € Dom(A;) or X; & Dom(X) implies X; = C}
(d) forall i =0...n, FVar(C;) N Dom(A;) # () implies X; = C;

151- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Matching Systems

1. A matching system T2 A P@«%AZ Is a conjunction of match
1=0...n ¢
equations, where A is idempotent, associative and commutative.

2. A matching system T is solved by the substitution o if
Dom(o) C Dom(X) \ Dom(A) and for all i =0...n, Pio = B;

3. A matching system T is in normal form when it satisfies the following
conditions:

@ T2 A Xi<XCi AN fi<X f;

1=0...n 1=0...m
(b) forall h,k=0...n, X; = X implies C, = C
(c) foralli=0...n, X; € Dom(A;) or X; & Dom(X) implies X; = C}
(d) forall i =0...n, FVar(C;) N Dom(A;) # () implies X; = C;

4. if condition 3 is satisfied the matching system T produces the substitution
{C1/X1---C,/X,}, otherwise the matching fails

151- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)

~ Pl_«%,APQ N\ Bl'«%’ABQ

152— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)
~ Pl_«%,APQ N\ Bl'«%’ABQ

(Delay) [Pl <A Cl]Bl«E[PQ <A CQ].BQ

> Pl‘«%’APQ N\ Bl'«%’ABQ N\ Cl'«?CQ

152— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)

~ Pl_«%,APQ N\ Bl'«%’ABQ

(Delay) [P <A C1].B1=<g [Py <a Cs]. By

> Pl'«%’APQ N\ Bl'«%’ABQ N\ Cl'«?CQ

(Appl/Struct) (A1 5 B1) =<t (Ay 5 By)

~ Al'«%AQ A\ Bl'«?BQ

152— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Algorithm Alg
(Lbd/ Prod) (P —a By) =< (P —a Bo)

~ Pl_«%’APQ N\ Bl'«%’ABQ

(Delay) [P <A C1].B1=<g [Py <a Cs]. By

> Pl'«%’APQ N\ Bl'«%’ABQ N\ 01«1;02

(Appl/Struct) (A1 5 B1) =<t (Ay 5 By)

~ Al'«%AQ A\ Bl'«%BQ

recall the reduction rule [P <g C|.B —, Bo P=OC)

152— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Termination of Alg

e The relation ~+ is defined as the reflexive, transitive and compatible closure of

D

o If T~ T’ with T’ a matching system in solved form then, we say that the
matching algorithm Alg (taking as input the system T) succeeds

e The matching algorithm is clearly terminating (since all rules decrease the size
of terms) and deterministic (no critical pairs), and of course, it works modulo
a-conversion and Barendregt's hygiene-convention

e Starting form a given solved matching system of the form

T2 6\ Xi«iiAi A\ aj«ijaj

...n j=0...m

the corresponding substitution {A1/X;7--- A, /X, } is exhibited.

153— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

?
o X —(xu) X=<KpX —(xi) X

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!

?
o X —(xuy) X=X —xy) ¥

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!

o X — (X 1) X«%X — (X 1) Y ~ X«}X A X'«}Y KO!!

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

o X — (X 1) X«(‘SX — (X 1) X ~ X«}X OKl!
o X — (X 1) X«(‘SX — (X 1) Y ~ X«}X A X'«}Y KO!!

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

o X — (X 1) X«%X — (X 1) X ~ X«}X OKl!
o X — (X 1) X«(‘SX — (X 1) Y ~ X«}X A X'«;Y KO!!

X=X ANf=EFAXKEX AY <3 OKI!

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

o X —(x. X«%X —>(X:) X~ X«}X OK!!
o X —xi) X=X »xi) Y ~» X< X AX<LY Ko
o X —o(x) F(XY) =y X —(x) (X 3) ~

X=X ANf=EFAXKEX AY <3 OKI!

o [f(X) <ixy FIMIX=YF(X) <(x) F(3)].X

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Less Fasy Running

o X —(x. X«%X —>(X:) X~ X«E(X OK!!
o X —xi) X=X »xi) Y ~» X< X AX<LY Ko
o X —(xu) [(XY)=y X —(xa) f(X3) ~

X=X ANf=EFAXKEX AY <3 OKI!
o [f(X) < (x:) f(Y)]X*«%/[f(X) <L (x:) f(3)].X ~

fRYAXKEEXNANX<KEX ANy FAY =<3 ok

154— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Two Easy Running
¢ (cons(T X nil(T)) —x4 X) cons(T 3 nil(T))

155— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T))

155— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T OK!l with o = {3/X}

155— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T OK!l with o = {3/X}

¢ (cons(T X nil(T)) — x4 X) cons(i 3 nil(i))

155— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T OK!l with o = {3/X}

e (cons(T X nil(T)) —x.) X) cons(i 3 nil(i))

Solve cons(T X nil(T)) < cons(i 3 nil(i))

155— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Two FEasy Running
o (cons(T X nil(T)) — x4 X) cons(T 3 nil(T))

Solve cons(T X nil(T)) < cons(T 3 nil(T)) ~
X <X 3AT=< T OK!l with o = {3/X}

¢ (cons(T X nil(T)) — x4 X) cons(i 3 nil(i))

Solve cons(T X nil(T)) < cons(i 3 nil(i)) ~
X<«33AT<Fi KO!

155— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Type System

156— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System |

(s1,892) €)A
@ - S1 . 89

(Axioms)

157— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System |

(s1,892) €)A
@ - S1 . 89

[+ AI" |—CfA7 BF %B . C (StTUCt)

(Axioms)

157— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

157— ESSLLI-2004, Nancy

The Type System |

(s1,892) €)A
@ - S1 . 89

[' - AF: I—CA, BF: |_CB . C (Struct)

I'FA:s a¢& Dom(T)

(Axioms)

I'N'aw:AFa: A (Start)

The rewriting calculus

Pure Pattern Type Systems

The Type System |
(s1,892) €)A

0F s : s (Axioms)
' AI’: I—CA, BF: I_CB - C (Struct)
SRRl S stary
I'FA:B [‘?al_;cq—: ;94 | Ba Z Dom/(I) (W eak)

157— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System |
(s1,892) €)A

0F s : s (Axioms)

' AI’: I—CA, BF: I_CB - C (Struct)
SRRl S stary
I'FA:B [‘?al_;cq—: ;94 | Ba Z Dom/(I) (W eak)
CHA:B _THC:D BusC g,

157— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

A

B:C I'=1TA:A.C : s
- A -

A—n B -TAAC (Ads)

-
I

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83) c R
P AFA:C T.AFB: s
' HFITA:A.B : s3

(Prod)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

I'-C: s (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IIC:A.D I''AFC:FE FI—B:E(A)
I'-AB:[C<aB|D pp

(Prod)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

I'EC: sy (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IIC:A.D I''AFC:FE FI—B:E(A)
I'-AB:[C<aB|D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

I'-C: s (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'-A:IICCAD TI'AFC:FE FI—B:E(A)
I'-AB:[C<aB|D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E FI—B:E(A I
I'-AB:[C<aB]D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'-AB:[C<aB]D pp

I''AFA:E T,A-C:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_0281 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'A+FA:E T, ArC:D TFB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

INAFA:E T, AFC:D TFB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'AFA:E T, AFC:D T'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A - B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)672
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'AFA:E T''AFC:D I'FB:D
' [C <«a BJA:[C <A B|'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Type System ||

I'AFB:C T FIIAA.C:s
I'A A B:ITA:A.C

(Abs)

F|_CI<91 (81,82,83)673
P AFA:C T.AFB: s
' HFITA:A.B : s3

I'FA:IICCAD T AFC:E I‘I—B:E(A I
I'AB:[C<aBD bp

I'AFA:E T AFC:D T'FHFB:D
I'-[C<aBJA:[C<kaB]'E

(Prod)

(Subst)

158— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Fetch Your System

I'EC': s (31,82783) cR
I'AFA:C T.AF B:s

[k TTA:A.B : s5 (Prod)
System Rules
Ps (, *, *)
02 (s, %, %) | (O, %, %)
pw (%, *, *) (O,0,0)
pw (, *, *) (x,0,0) | (O0,0,0)
pLF (%, *, *) (x,0,0)
pP2 Gk, %,%) | (O, %, %) | (x,0,0)
pPw (, *, *) (x,0,0) | (O,0,0)
pPw (x,%,%) | (O,%,%) | (x,0,0) | (O0,0,0)

159— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Typed Examples

160— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Example: Simple Type Derivation

Let T 24k, f:I12:3.4, 3:i, 4:i, and A2 X:i, and ¥ 2 Z:4,

3| (ren) €R
' Z <5 X

I'AF ()\3:50).3) :113:0.i |56 A F[3<g X
VAR (A3:0.3) X - [3<y Xt THIIF(X):A [3<<@X]
FEA(X):A(N3:0.3)X : T1f(X):A.[3 < X].3 34

I'E (Af(X):A.(A3:0.3)X) f(3) : [f(X) <a fB)].[3<p X]d |12
TF (AM(X):A.(A3:0.3)X) £(3) : i

where | 1 |2[f(X) <a f(3)].[3 <p X].i=gi, and | 2 |[2T k4 : %, and
3120,AF f(X):[Z <5 X4, and | 4 |2TF £(3) : [Z <5 3].4, and
5|2T,AF X :4,and| 6 |2T,AF3:4.

161- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Example: Simple Type Derivation

Let T 24k, f:I12:3.4, 3:i, 4:i, and A2 X:i, and ¥ 2 Z:,

3| (ren) €R
' Z <5 X

I'AF ()\3:50).3) :113:0.i |56 A F[3<g X
VAR (A3:0.3) X - [3<y Xt THIIF(X):A [3<<@X]
FEA(X):A(N3:0.3)X : T1f(X):A.[3 < X].3 34

[EAf(X):A(A3:0.3)X) f(3) : [f(X) <a fF(I)].[3<p X]t |12
T'F OM(X):A.(0\3:0.3)X)£(3) : i

where | 1 |2[f(X) <a f(3)].[3 <p X].i=gi, and | 2 |[2T k4 : %, and
3120,AF f(X):[Z <5 X4, and | 4 |2TF £(3) : [Z <5 3].4, and
5|2T,AF X :4,and| 6 |2T,AF3:4.

161- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Playing with the Rho-cube: pLF

o Let I' 2k, f:IIX:(X:0).%, 31

' XabFX:1 I'Fe:x I XabEx:0O

[TIX:(Xd).x : O
e fIIX (X)) .x I XukEX:t I'F3:9
I' - f(3) : [X < (X:4) 3]T>I< = %

o ' - IIX:(X:i).x: O can be derived thanks to the specific rule (x, O, O)

162— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Playing with the Rho-cube: p2

e In this system the following polymorphic identity with pattern f" can be
derived (where f denotes f* —%):

(C’onv—‘,—Appl)
— % O Fx:0 FEx:0 ok!
EX* % I—f(YX) X'EX i+ b X ik g ;
FYXT X X VX R (YY) - X I—X*:*ml—f(YX*)—»X*:*
- AV =YYy Y - X Xk, VX B X* = f(YY) = X @ %

X, VX F X f(YY) =YY X, VX F X = f(YY) = Xt %

163— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Playing with the Rho-cube: p2

e In this system the following polymorphic identity with pattern f" can be
derived (where f denotes f* —%):

(C’onv—‘,—Appl)
— % O Fx:0 FEx:0 ok!
EX* % I—f(YX) X'EX i+ b X ik g ;
FYXT X X VX R (YY) - X I—X*:*ml—f(YX*)—»X*:*
- AV =YYy Y - X Xk, VX B X* = f(YY) = X @ %

X, VX F X f(YY) =YY X, VX F X = f(YY) = Xt %

o X, Y:XF f(YX) — X : % can be derived thanks to (x, *, %)

163— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Playing with the Rho-cube: p2

e In this system the following polymorphic identity with pattern f" can be
derived (where f denotes f* —%):

(C’onv—‘,—Appl)
Fx .0 Fx 0 F % ok!
- X . % I—f(YX) X*I—X*:*I—X* — ;
FYXT X X VX R (YY) - X I—X*:*ml—f(YX*)—»X*:*
- AV =YYy Y - X Xk, VX B X* = f(YY) = X @ %

X, VX F X f(YY) =YY X, VX F X = f(YY) = Xt %

o X, Y:XF f(YX) — X : % can be derived thanks to (x, *, %)

o X, Y:X F X*— f(YX') — X : % can be derived thanks to (O, *,)

163— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS

Metatheory

CONCLUSIONS

164— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Results

e Confluence The relation —s 15 confluent

e Subject Reduction. If I'-A: B, and A+ C, thenI' - C : B

165— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

P TS: Some Results

e Confluence The relation —s 15 confluent

e Subject Reduction. If I'-A: B, and A+ C, thenI' - C : B

e Consistency. Any normalizing P T S is logically consistent, i.e.
foreverysort s€ S, Xist/A: X

e Conservativity. P T Ss are a conservative extension of P Ss:

TtppgA:B <= TIThprg Al: BT

165— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Open Tracks

e strong normalization, we conjecture that standard model construction
) . . <
techniques can be used to prove strong normalization of the \-cube;

e type checking/inference, we conjecture that existing algorithms for PTSs adapt
readily to P T Ss;

e it would be interesting to study P T Ss with a limited form of decidable
higher-order unification, in the style of A-Prolog;

e encoding dependent case analysis, dependent sum types (records) a la
Coquand-Pollack-Luo;

e explicit substitutions. The extension is not trivial, because of delayed matching
constraints, but the resulting formalism could serve as the core engine of a
little type-checker underneath of a powerful proof assistant;

166— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Challenge ... Extending the Curry-Howard Isomorphism

e The extension can be considered from the point of view of sequent calculi,
deduction modulo, and natural deduction respectively;

e From the point of view of sequent calculi, it remains to investigate how P T Ss
can be used to extend previous results on term calculi for sequent calculi, and
how their extension with matching theories can be used to provide suitable
term calculi for deduction modulo;

e From the point of view of natural deduction, P T Ss correspond to an extension
of natural deduction where parts of proof trees are discharged instead of
assumptions;

e To our best knowledge, such an extended form of natural deduction has not
been considered previously, but it seems interesting to investigate whether such
an extended natural deduction could find some applications in proof assistants,
e.g. for transforming and optimizing proofs.

167— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Logics and Rho a la Church

The relation with (intuitionistic) logic through the so-called Curry-Howard
isomorphism, or ‘formulae-as-types’ principle, has been profoundly studied for

La da. However, for Rho a laChurch, this relation is less clear, as demonstrated
by the authors. The principle could be adapted as follows:

Given a typed term A, if we can derive for A a type T in the typed system
Rho, with a derivation Der+, then the term A can be seen as the coding

of a logical proof, proving the formula o that can be interpreted as the
type T assigned to A.

168— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Curry from Church

For those systems, if Dert is a typed derivation, and (—|) is the above meant
erasing function, then by applying (—) to the “subject” of every judgment in
Dert, we obtain a valid type assignment derivation Dery with the same structure
of the typed one. Vice versa, every type assignment derivation can be viewed as
the result of an application of (—) to a typed one. In particular, the erasing
function (—|) induces an isomorphism between every typed system and the

corresponding type assignment system.

) L f ([P <a Al.B) £ [P < (A)]-(B)
1X) &y (P —a A = P —(4)
A 2oy B 2 (4) (B)

(4, B) = (4),(B)

169- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Logics and Rho a la Curry

For the type assignment system Rho the relation with logic is less clear even for
the corresponding type assignments for the La ©da. The ‘formulae-as-types’
principle of Curry and Howard could be extended to the above type assignment
systems as follows:

Given an untyped term U, if we can assign a type T in the type assignment
system Rho, with a derivation Dery, then:

e Dery can be interpreted as the coding of a proof for the logic formulas
©w which corresponds to the interpretation of the type T assigned to U;

e U can be interpreted as the coding of a “logical proof schema”, whose
instances (of the schema) prove, respectively, all the logic formulas

©;'s that can be interpreted as the types 7;'s that can be assigned
toU.

170- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Typed and Untyped Judgments and Derivations

Dert Dery

' AT - 'y (A) : 7

171- ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Thanks for youp attention ...

/\<<w N Pw PROPw - PREDw
59 ~)\<<p2/ PROP2/ - PREDz/
)\<<£ ‘)\<<Pg PROPw - PREDw

)\<<—c>/ -)\<<P/ PRO P/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED

172— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Thanks for youp attention ...

/\<<w N Pw PROPw - PREDw
)\<<2)\<<P2/ PROP2/ - PREDz/(
)\<g ‘)\<<Pg PROPw - PREDw

>\<<—{>/ - >\<<P/ PRO P/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED

172— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

Thanks for youp attention ...

/\<<w N Pw PROPw - PREDw
)\<<2)\<<P2/ PROP2/ . PRED2/(
)\<g ‘)\<<Pg PROPw - PREDw

>\<<—{>/ - >\<<P/ PRO P/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED

172— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

The Uncle Pat and the Lady Match

We Can Do !

FOR U S ARMY

NEAREST RECRUITING STATION

=P TS

173— ESSLLI-2004, Nancy The rewriting calculus Pure Pattern Type Systems

PPDP-04

IRh

Motivations

175— ESSLLI-2004, Nancy The rewriting calculus iRHO

Multiparadigm

MULTIPARADIGM.ORG

e Rewriting-based languages (like, e.g. ELAN, Maude) try to unify the logic
paradigm with the functional paradigm.

176— ESSLLI-2004, Nancy The rewriting calculus iRHO

Multiparadigm

2 Functional

= MULTIPARADIGMVI.ORG

00 Object Oriented

e Rewriting-based languages (like, e.g. ELAN, Maude) try to unify the logic
paradigm with the functional paradigm.

e Although these languages are less used in common practice than e.g.
object-oriented languages (like, e.g., Java, C#, O'Caml, . ..), they can be
used also as (formal) common intermediate languages for implementing
compilers for rewriting-based, functional, object-oriented, logic, and others
“high-level” modern languages and meta languages.

176— ESSLLI-2004, Nancy The rewriting calculus iRHO

Main Atout: Pattern Matching.

e Pattern-matching allows to discriminate between alternatives. Once a pattern
is recognized, a pattern is associated to an action. The corresponding pattern
is thus rewritten in an appropriate instance of a new one

e Ability to handle a collection of results: pattern matching need not to be
exclusive, i.e. multiple branches can be “fired” simultaneously

e An empty collection of results represents an application failure, a singleton
represents a deterministic result, and a collection with more than one element
represents a non-deterministic choice between the elements of the collection

177- ESSLLI-2004, Nancy The rewriting calculus iRHO

Main Atout: Pattern Matching.

e Pattern-matching allows to discriminate between alternatives. Once a pattern
is recognized, a pattern is associated to an action. The corresponding pattern
is thus rewritten in an appropriate instance of a new one

e Ability to handle a collection of results: pattern matching need not to be
exclusive, i.e. multiple branches can be “fired” simultaneously

e An empty collection of results represents an application failure, a singleton
represents a deterministic result, and a collection with more than one element
represents a non-deterministic choice between the elements of the collection

e Applications: pattern recognition, strings or trees manipulation, etc

e Pattern-matching present in ML, Haskell, Scheme, or Prolog; considered a
convenient mechanism for expressing complex requirements about the
function’s argument, rather than a basis for an ad hoc paradigm of computation

177- ESSLLI-2004, Nancy The rewriting calculus iRHO

Rho’s Goodies

e One of the main features of the Rewriting-calculus is its capacity to deal with
(de)structuring structures like e.g. lists: we record only the names of the
constructor and we discard those of the accessors

e Since structures are built-in the calculus, it follows that the encoding of
constructor/accessors is simpler w.r.t. the standard encoding in the
Lambda-calculus. The table below (informally) compares the (untyped)
encoding of accessors in both formalisms

ops/form Rewriting-calculus Lambda-calculus
cons X =Y —»(cons X Y)| ANXYZ. ZXY
car (cons X V) - X MN. Z(AXY.X)
cdr (cons X Y) =Y N. Z(AXY.Y)

178— ESSLLI-2004, Nancy The rewriting calculus iRHO

iIRho vs. Programming

e iRho is an extension of Rho with references, memory allocation, and
assignment. It features, all the “idiosyncrasies” of functional/rewriting-based
languages with imperative features and modern pattern matching facilities

179- ESSLLI-2004, Nancy The rewriting calculus iRHO

iIRho vs. Programming

e iRho is an extension of Rho with references, memory allocation, and
assignment. It features, all the “idiosyncrasies” of functional/rewriting-based
languages with imperative features and modern pattern matching facilities

e The controlled and conscious use of references, gives to the user the
programming comfort and a good expressiveness which we could not a priori

expect from a so simple calculus

179- ESSLLI-2004, Nancy The rewriting calculus iRHO

iIRho vs. Programming

e iRho is an extension of Rho with references, memory allocation, and
assignment. It features, all the “idiosyncrasies” of functional/rewriting-based
languages with imperative features and modern pattern matching facilities

e The controlled and conscious use of references, gives to the user the
programming comfort and a good expressiveness which we could not a priori
expect from a so simple calculus

e The "magic ingredients” of iRho are the combination of modern and safe

imperative features (full control over internal data-structure reprs), and of the
“matching power” (full Lisp-like operations, like cons/car/cdr)

179- ESSLLI-2004, Nancy The rewriting calculus iRHO

iIRho vs. Programming

e iRho is an extension of Rho with references, memory allocation, and
assignment. It features, all the “idiosyncrasies” of functional/rewriting-based
languages with imperative features and modern pattern matching facilities

e The controlled and conscious use of references, gives to the user the
programming comfort and a good expressiveness which we could not a priori
expect from a so simple calculus

e The "magic ingredients” of iRho are the combination of modern and safe
imperative features (full control over internal data-structure reprs), and of the
“matching power” (full Lisp-like operations, like cons/car/cdr)

e nsumma, iIRho as theoretical engine for an family of ad hoc languages
combining functions, patterns, objects with semi-structured XML-data
(XDUCE, CDUCE, HYDROJ, TOM) (“..0-0 pattern matching focuses on the

essential information in a msg and is insensitive to inessential information...”)

179- ESSLLI-2004, Nancy The rewriting calculus iRHO

A “Fresh” Approach to Rewriting

e We present an imperative fully typed (e.g. a la Church) version of the Rho, a
pattern-matching based calculus with side-effects, which we call iRh

e We formulate the static and dynamic semantics of iRh

e A call-by-value deterministic Natural Semantics a la Kahn: it immediately
suggests how to build an interpreter for the calculus

e The static semantics is given via a first-order type system based on a form of
product-types reflecting the (non-commutative) structure of the term

180— ESSLLI-2004, Nancy The rewriting calculus iRHO

A “Fresh” Approach to Rewriting

We present an imperative fully typed (e.g. a la Church) version of the Rho, a
pattern-matching based calculus with side-effects, which we call iRh

We formulate the static and dynamic semantics of iRh

A call-by-value deterministic Natural Semantics a la Kahn: it immediately
suggests how to build an interpreter for the calculus

The static semantics is given via a first-order type system based on a form of
product-types reflecting the (non-commutative) structure of the term

Access and modify a (monomorphic) typed store, and define fixpoints, control
structures, ...

IRho enjoys determinism of the interpreter, subject reduction, and decidability
of type-checking (completely checked by a machine assisted approach, using
the Coq proof assistant). Progress and decidability of type-checking are proved
by pen and paper

180— ESSLLI-2004, Nancy The rewriting calculus iRHO

Special Emphasis (iRho)

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

181- ESSLLI-2004, Nancy The rewriting calculus iRHO

Special Emphasis (iRho)

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

a “sound” machine (the interpreter)
a “sound” type system (the type checker), such that
“well typed programs do not go wrong" [Milner],
both semantics being suitable to be specified with nice mathematics,
to be implemented with high-level programming languages,
and to be certified with modern and semi-automatic theorem provers, like
Coq

181- ESSLLI-2004, Nancy The rewriting calculus iRHO

Special Emphasis (iRho)

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

a “sound” machine (the interpreter)
a “sound” type system (the type checker), such that
“well typed programs do not go wrong" [Milner],
both semantics being suitable to be specified with nice mathematics,
to be implemented with high-level programming languages,
and to be certified with modern and semi-automatic theorem provers, like
Coq

e Thus, we have encoded in Coq the static and dynamic semantics of iRh

181- ESSLLI-2004, Nancy The rewriting calculus iRHO

Special Emphasis (iRho)

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

a “sound” machine (the interpreter)
a “sound” type system (the type checker), such that
“well typed programs do not go wrong" [Milner],
both semantics being suitable to be specified with nice mathematics,
to be implemented with high-level programming languages,
and to be certified with modern and semi-automatic theorem provers, like
Coq

e Thus, we have encoded in Coq the static and dynamic semantics of iRh

e All subtle aspects, (usually “swept under the rug”) on the paper, are here
enlightened by the rigid discipline imposed by the Logical Framework of Coq

181- ESSLLI-2004, Nancy The rewriting calculus iRHO

e Often, this process may had a bearing on the design of the static and dynamic
semantics

182— ESSLLI-2004, Nancy The rewriting calculus iRHO

e Often, this process may had a bearing on the design of the static and dynamic
semantics

e This (positive) continuous cycle O O between mathematics, © (O manual
(i.e. pen-and-paper) and (O (O mechanical proofs, and O O “toy”
implementations using high-level languages such Scheme (and back) has been
fruitful since the very beginning of our project

182— ESSLLI-2004, Nancy The rewriting calculus iRHO

e Often, this process may had a bearing on the design of the static and dynamic
semantics

e This (positive) continuous cycle O O between mathematics, © (O manual
(i.e. pen-and-paper) and (O (O mechanical proofs, and O O “toy”
implementations using high-level languages such Scheme (and back) has been
fruitful since the very beginning of our project

182— ESSLLI-2004, Nancy The rewriting calculus iRHO

e Often, this process may had a bearing on the design of the static and dynamic
semantics

e This (positive) continuous cycle O O between mathematics, © (O manual
(i.e. pen-and-paper) and (O (O mechanical proofs, and O O “toy”
implementations using high-level languages such Scheme (and back) has been
fruitful since the very beginning of our project

e Although our calculus is rather simple, it is not impossible, in a near future, to
scale-up to larger projects, such as the certified implementation of compilers for
a “real” programming language of the C family (Cminor C C)
(Action Recherche Coordonnée INRIA, Concert)

182— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRh

The Syntax

183— ESSLLI-2004, Nancy The rewriting calculus iRHO

First step: Functional fRh

The symbol 7 ranges over types, I', A range over contexts, P ranges over the set

P of pseudo-patterns, (V C P C T), and A, B, .. range over terms

T =b|T T |TAT Types
A:=0A X1 | A, fir Contexts
P:=f|X|fP|PP Patterns
Ai=f| X |P-pA|AA|A A Terms

184— ESSLLI-2004, Nancy The rewriting calculus iRHO

First step: Functional fRh

The symbol 7 ranges over types, I', A range over contexts, P ranges over the set

P of pseudo-patterns, (V C P C T), and A, B, .. range over terms

T o=b|T-T|TAT Types
A:=0A X1 | A, fir Contexts
P:=f|X|fP|PP Patterns
Ai=f| X |P-pA|AA|A A Terms

184— ESSLLI-2004, Nancy The rewriting calculus iRHO

First step: Functional fRh

The symbol 7 ranges over types, I', A range over contexts, P ranges over the set

P of pseudo-patterns, (V C P C T), and A, B, .. range over terms

T o=b|T-T|TAT Types
Ax=0] A X1 | A, fir Contexts
P:=f|X|fP|PP Patterns
Ai=f| X |P-pA|AA|A A Terms

184— ESSLLI-2004, Nancy The rewriting calculus iRHO

First step: Functional fRh

The symbol 7 ranges over types, I', A range over contexts, P ranges over the set

P of pseudo-patterns, (V C P C T), and A, B, .. range over terms

T o=b|T-T|TAT Types
Ax=0] A X1 | A, fir Contexts
P:=f|X|fP|PP Patterns

A:=f| X |P-pA|AA|A A Terms

184— ESSLLI-2004, Nancy The rewriting calculus iRHO

First step: Functional fRh

The symbol 7 ranges over types, I', A range over contexts, P ranges over the set

P of pseudo-patterns, (V C P C7), and A, B, ... range over terms
T o=b|T-T|TAT Types
Ax=0] A X1 | A, fir Contexts

P:=f|X|fP|PP Patterns

184— ESSLLI-2004, Nancy The rewriting calculus iRHO

Second step: Imperative iRh

The symbol P ranges over the set P of pseudo-patterns, (V C P C 7).

. as in fRh

ﬁ
|

.= ...asin fRh

. as in fRh

~ v b
1l

.= ...asin fRh

185— ESSLLI-2004, Nancy

.| T oref

... |ref P

I'ypes
Contexts

Patterns

.. refA|TA| A:= A Terms

The rewriting calculus

iRHO

Second step: Imperative iRh

The symbol P ranges over the set P of pseudo-patterns, (V C P C 7).

. as in fRh

ﬁ
|

.= ...asin fRh

. as in fRh

~ v b
1l

.= ...asin fRh

185— ESSLLI-2004, Nancy

.| T oref

... |ref P

1'ypes
Contexts

Patterns

.. refA|TA| A:= A Terms

The rewriting calculus

iRHO

Second step: Imperative iRh

The symbol P ranges over the set P of pseudo-patterns, (V C P C 7).

. as in fRh

ﬁ
|

.= ...asin fRh

. as in fRh

>~ v b
1l

.= ...asin fRh

185— ESSLLI-2004, Nancy

.| T oref

... |ref P

1'ypes
Contexts

Patterns

.. refA|TA| A:= A Terms

The rewriting calculus

iRHO

Second step: Imperative iRh

The symbol P ranges over the set P of pseudo-patterns, (V C P C 7).

. as in fRh

ﬁ
|

.= ...asin fRh

. as in fRh

>~ v b
1l

.= ...asin fRh

185— ESSLLI-2004, Nancy

.| T oref

... |ref P

1'ypes
Contexts

Patterns

.. refA|TA| A:= A Terms

The rewriting calculus

iRHO

Second step: Imperative iRh

The symbol P ranges over the set P of pseudo-patterns, (V C P C 7).

:=...asinfRho... | T ref Types
A::=...asinfRho... Contexts
P:=...asinfRho...|ref P Patterns

fRh

185— ESSLLI-2004, Nancy The rewriting calculus iRHO

iIRho in a glance

Intuitively iRho deals with references a la Caml i.e.:

o (Deref-types) The type 7 ref is the type of “refs” containing a value of type 7
e (Deref-op) The operator ! is a “dereferencing” operator (goto memory)
e (Ref-op) The operator ref is a “referencing” operator (malloc)

e (Assign) The term A := B is an “assignment” operator, which returns as
result the value obtained by evaluating B.

We have not (yet) modeled garbage collection: new locations created during
reduction will remain in the store forever

186— ESSLLI-2004, Nancy The rewriting calculus iRHO

Simple, Naive GC (by Talcott, Mason, Morrissett, et al.)

for 1 < n

letrec x_1 = ref V_1
and ...
and x_n = ref V_n
in A

-——>

letrec x_1 = ref V_1
and ...
and x_1 = ref V_1
in A

if FV(V_1, ..., V_i)/\ {x_(i+1), ..., x.n} =0

187— ESSLLI-2004, Nancy The rewriting calculus iRHO

Let-like and conditionals (in a call-by value setting)

As usual, let-like constructs can be generalized with pattern and becomes simple

syntactic sugar for applications (types are omitted), i.e.
et PKAinB 2 (P+-B)A
Conditional too can be easily encoded using pair, applications, and constants, i.e.

<= A thenB else C' 2 (true — B,false - (') A

and

2

neg (true — false, false — true)

188— ESSLLI-2004, Nancy The rewriting calculus iRHO

Values and Environments in fRh

e \We introduce the set Val of values and the set of environments &nv

Ay w= fIFALAGA (P —=aA-p) | ({P<a AJ.B-p)

fun closures fail closures

e Environments are partial functions from the set of variables to the set of values

(A, fX=Y

X—AlY) 2
pIX = AJY) < p(Y) otherwise

\

e “Failure-values” ([P <A A,].B - p) denote failure occurring when we cannot
found a correct substitution 6 on the free variables of P such that 6(P) = A,;
Failure-values are obtained during the computation when a matching failure
occurs. It could (in principle) be caught by a suitable exception handler

189— ESSLLI-2004, Nancy The rewriting calculus iRHO

Values and Environments in fRh

e We introduce the set Val of values and the set of environments &nv

A, w= f|f A, | Ay, Ay \<P —a A P>, | <[P <A AJ].B - P>,

fun closures fail closures

e Environments are partial functions from the set of variables to the set of values

(A, fX=Y

X—AlY) 2
pIX = AJY) < p(Y) otherwise

\

e “Failure-values” ([P <A A,].B - p) denote failure occurring when we cannot
found a correct substitution 6 on the free variables of P such that 6(P) = A,;
Failure-values are obtained during the computation when a matching failure
occurs. It could (in principle) be caught by a suitable exception handler

189— ESSLLI-2004, Nancy The rewriting calculus iRHO

Values and Environments in fRh

e We introduce the set Val of values and the set of environments &nv

A, w= f|f A, | Ay, Ay \<P —a A P>, | <[P <A AJ].B - P>,

fun closures fail closures

e Environments are partial functions from the set of variables to the set of values

(A, fX=Y

X —AlY) 2
pIX = AJY) | p(Y) otherwise

\

e “Failure-values” ([P <A A,].B - p) denote failure occurring when we cannot
found a correct substitution 6 on the free variables of P such that 6(P) = A,;
Failure-values are obtained during the computation when a matching failure
occurs. It could (in principle) be caught by a suitable exception handler

189— ESSLLI-2004, Nancy The rewriting calculus iRHO

Values and Stores in iRh

e The new set of values is enriched by locations. Moreover we define the set of

global stores Store (the symbol o ranges over stores)

A, = ...asinfRho...| _t_ Imperative Values

locations

e Stores are partial functions from the set £ of locations to the set of values

/

A, If 11 = 19

A, - .
ol = Ad(e) < o(Ly) otherwise

\

190- ESSLLI-2004, Nancy The rewriting calculus iRHO

Values and Stores in iRh

e The new set of values is enriched by locations. Moreover we define the set of

global stores Store (the symbol o ranges over stores)

A, = ...asinfRho...| _t_ Imperative Values

locations

e Stores are partial functions from the set £ of locations to the set of values

/

A, If 11 = 19

A, - .
ol = Ad(e) < o(Ly) otherwise

\

190- ESSLLI-2004, Nancy The rewriting calculus iRHO

Values and Stores in iRh

e The new set of values is enriched by locations. Moreover we define the set of

global stores Store (the symbol o ranges over stores)

A, = ...asinfRho...| _t_ Imperative Values

locations

e Stores are partial functions from the set £ of locations to the set of values

’

A, if 11 = 19

A, - .
ol = Ad(e) < o(Ly) otherwise

\

190- ESSLLI-2004, Nancy The rewriting calculus iRHO

Natural Semantics for fRh

e We define a call-by-value optimistic operational semantics via a natural proof
deduction system a la Gilles Kahn (induces quasi directly an “interpreter
machine”)

e The purpose of the deduction system is to map every expression into a normal
form, 7.e. an irreducible term in weak head normal form. The present strategy
is call-by-value since it does not work under plain abstractions (i.e. P —a A)

e The present interpreter machine is optimistic since it gives a result if at least
one computation does not produce a failure-value: of course other choices are
possible, like e.g. a “pessimistic’ machine which stops if at least one
failure-value occurs

191- ESSLLI-2004, Nancy The rewriting calculus iRHO

Natural Semantics (NS) in a Nutshell

e Variant of Plotkin's Structured Operational Semantics (SOS)

e The semantics induces quasi directly an Interpreter. Judgments are:

premises, 7 >0
store - env - expr |}y, value - store

; (expr-rule)

premises, © >0
store - (A, - Ay) {can value - store

; (appl-case)

premises;, ¢ >0
store-envh (A-A,) Jmatch env’

(patt-case)

192— ESSLLI-2004, Nancy The rewriting calculus iRHO

Optimistic- vs. Pessimistic-machines

Our machine is optimistic, 7.e. it does not abort computations if a matching
failure occurs, recording that one computation goes wrong, and hoping that at
least one computation succeeds. The choice of killing the computation once a

failure-value is produced leads to a pessimistic machine

F (33,4 4) 4 (B<43-0),4- (Opt)
tail4+-4

(B34 -4) 4y (B<d30)- .. T

just fail

A pessimistic-machine can be quite easily produced “trucking” an optimistic one
by propagating failure-values

193— ESSLLI-2004, Nancy The rewriting calculus iRHO

Just try before | tell you the full story ...

e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ! X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?

@@ - AU’vaI

194— ESSLLI-2004, Nancy The rewriting calculus iRHO

Just try before | tell you the full story ...

e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ' X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?

®@ - AUvaI

194— ESSLLI-2004, Nancy The rewriting calculus iRHO

Just try before | tell you the full story ...

e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ' X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?

®@ - AUvaI4°

194— ESSLLI-2004, Nancy The rewriting calculus iRHO

Just try before | tell you the full story ...

e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ' X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?

@@ - AUva|4°[LO'_>47

194— ESSLLI-2004, Nancy The rewriting calculus iRHO

Just try before | tell you the full story ...

e Take the imperative term (types omitted)

Az — (3 — =3 !
(f(X,Y) - (3 - (X Y)) ' X) f(ref3,ref4)
pattern argument

e \We evaluate this term in the empty store @ and the empty environment @

e The result would be?

@@ - AUV3|4°[L0I—>4,L1I—>4]

194— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRh

Natural Semantics

195— ESSLLI-2004, Nancy The rewriting calculus iRHO

Natural Judgments in iRh

e The semantics is given in terms of three judgments
/
o-p F A val A, -0
/
o - <Av) Bv> U’call C'v e

g-p = <AAV> Umatch ,0/

e The first judgment evaluates a term in iRho, the second apply one value to
another producing a result value and a new store, and the last judgment
updates a correct environment obtained by matching a term against a value

196— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

l)va |

197— ESSLLI-2004, Nancy The rewriting calculus iRHO

llvai: Application and Structures

0'0',0 — A Wval AV'O'l
0'1',0 — B Wval BV'O'Q

g2 B <AVBV> reall CV'UB
oo-pA Bl C, - o3

(Red_pv)

198- ESSLLI-2004, Nancy The rewriting calculus

iRHO

llvai: Application and Structures

op-p A bvat Ay -0y
g1-p I b VYval B, - 09
g2 B <Av . Bv> reall C1v 03

- pF AB b Coy ReATA)

O-O'IOI_AUvaIAv°O'1

o1-pbE B {va B, - 09
O-O'pl_AaBU’val AV7BV'02

(Red—Struct)

198- ESSLLI-2004, Nancy The rewriting calculus iRHO

llvai: Functions, Values, Variables

- pF P —pn Al (P —=aA-p) ~ (Red—Fun)

199- ESSLLI-2004, Nancy The rewriting calculus iRHO

llvai: Functions, Values, Variables

- pF P —pn Al (P —=aA-p) ~ (Red—Fun)

o pb f et f oo BTV

199- ESSLLI-2004, Nancy The rewriting calculus iRHO

llvai: Functions, Values, Variables

- pF P —pn Al (P —=aA-p) ~ (Red—Fun)
o pb f et f oo BTV
X € Domlp) (Red—Var)

O-'IOI_XlLvaIIO(X)'O-

199- ESSLLI-2004, Nancy The rewriting calculus iRHO

llvai: Referencing, Dereferencing, Assighnment

op-pHAlva Av-o1 1 ¢ Dom(oq)
oo pFref Alat-orft— A

(Red—ref)

200— ESSLLI-2004, Nancy The rewriting calculus iRHO

llvai: Referencing, Dereferencing, Assighnment

op-pHAlva Av-o1 1 ¢ Dom(oq)
oo p b ref Alat- o[t — A

(Red—ref)

oo pFAlvat-o1 € Dom(o)
oo p 1A va o1(t) - 01

(Red—!)

200— ESSLLI-2004, Nancy The rewriting calculus iRHO

llvai: Referencing, Dereferencing, Assighnment

op-pHAlva Av-o1 1 ¢ Dom(oq)
op-pbrefA ot — A

(Red—ref)

oo pFAlvat-o1 € Dom(o)
oo p 1A va o1(t) - 01

(Red—!)

L € Dom(oq)
O-O'/OI_AiLvaIL'O-l Ul'pFBUvale'O-Z

O'O'pl—A ::BUvaI BV°O'2[LI—>BV] (Red_::)

200— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

Ucall

201- ESSLLI-2004, Nancy The rewriting calculus iRHO

Ucall: FunOk, FunKO

go * Po - <P ' Bv> U’match P1

oo-p1 = Ala Ay - o1
O'0|_<<PA—I>AIO>BV> U'call AV'O'1

(Call—FunOk)

202— ESSLLI-2004, Nancy The rewriting calculus iRHO

Ucall: FunOk, FunKO

go * Po - <P ' Bv> U'match P1

oo-p1 = Ala Ay - o1
O'0|_<<PA—I>AIO>BV> Ucall AV'O'1

(Call—FunOk)

39,01- 0 - Po - <P ' Bv> U'match P1
A, = (P:A = A p)
o - <Av) Bv> Ucall Av 0

(Call—FunKo)

202— ESSLLI-2004, Nancy The rewriting calculus iRHO

Ucan: Structure, Algebric, and Wrong

o) - <Av . Cv> U’C3|| Dv 01

01 - <Bv) Cv> Ucall Ev 09
g - <(Ava Bv) ' Cv> U’call DV7 b, - o9

(Call—Struct)

203— ESSLLI-2004, Nancy The rewriting calculus iRHO

Ucan: Structure, Algebric, and Wrong

o) - <Av . Cv> U’C3|| Dv 01

01 - <Bv) Cv> Ucall Ev 09
g - <(Ava Bv) ' Cv> U’call DV7 b, - o9

(Call—Struct)

— — Call—Algb
0-|_<fAv'Bv>\lJ’callfAva'0'(. gr)

203— ESSLLI-2004, Nancy The rewriting calculus iRHO

Ucan: Structure, Algebric, and Wrong

o) - <Av . Cv> U’Call Dv 01

01 - <Bv) Ov> Ucall Ev 09
g - <(Ava Bv) ' Cv> U’call DV7 b, - o9

(Call—Struct)

— — Call—Algb
0-|_<fAv'Bv>\lJ’callfAva'0'(. gr)

A, = ([P <a B,J.A-p)

- <AV ' Cv> Ueal A, -0 (Call—WrOIlg)

203— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

iLmatch

204— ESSLLI-2004, Nancy The rewriting calculus iRHO

Umatch: Variables and Constants

o pF (F) Bmch (Match—Const)

205— ESSLLI-2004, Nancy The rewriting calculus iRHO

Umatch: Variables and Constants

o pF (F) Bmch (Match—Const)

o-phk <X ' Av> Umateh ,O[X — Av] (MatCh—Var)

205— ESSLLI-2004, Nancy The rewriting calculus iRHO

Umatch: Structures and References

Let x € {*,}

g - Po - <A) Av> Umatch P1

g - P - <B ' Bv> Umatch P2
0 - Po - <A*B) AV*BV> Umatch P2

(Match—Pair)

206— ESSLLI-2004, Nancy The rewriting calculus iRHO

Umatch: Structures and References

Let x € {*,}

g - Po - <A) Av> Umatch P1

g - P - <B ' Bv> Umatch P2
0 - Po - <A*B) AV*BV> Umatch P2

(Match—Pair)

L € Dom(o) o) = A,
g - o = <P) Av> iLmatch P1
g - Po - <refP) L> Umatch P1

(Match—Ref)

206— ESSLLI-2004, Nancy The rewriting calculus iRHO

Remark: About Linearity

This choice induces also a modification in the classical syntactic pattern matching
algorithm, since we “hide” the first binding in favor of the second one. The
classical syntactic pattern matching algorithm forces both occurrences to be

matchable with the same value. Both solutions are presented in the table below:

patt < term hide /Scheme force /ML
FXX) < [3,4) pi[X - 3[X = 4] #
F(X,X) < f(4L,4) | p2[X = 4][X — 4] |02 {4/X]

Linearity can be easily implemented (much bigger effort in the Coq code)

207- ESSLLI-2004, Nancy The rewriting calculus iRHO

The Uncle Pat and the Lady Match Still at Work...

We Can Do !

FOR U S ARMY

NEAREST RECRUITING STATION

208— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

Playing with NS

209- ESSLLI-2004, Nancy The rewriting calculus iRHO

An Imperative Natural Derivation

Take the imperative term

(F(X,Y) = (3= (X :=1Y)) 1X) f(ref3, ref 4)

with oo = [t — 3][t1 — 4], and 01 2 o[t — 4], and po 2 [X — 1o][Y — 11].

210- ESSLLI-2004, Nancy The rewriting calculus iRHO

Just a Nice BTEX Exercise

11 € Dom(oy)
Lo € Dom(oy) oo-po =Y valt1- 00
oo - po = X Jval to - 00 oo-po 1Y Yvard- o9

oo-po- X :=1Y a1 401
00 - po = (3 3) Ymatch o
UO|_<<3_DX:: !Y'p0>°3> Jeal 4 - o1
oo+ po = 1X a3+ 09
oo poF3 =X =Y |aB3—=X:=1Y-pg -0
0-0,,00'_ (3—1>X = 'Y) X U’call4'0-1
oo+ 0+ <f(X7 Y)'f(L07L1)> Umateh po

00 @ F((f(X,Y) = (3= X :=1Y)1X)-0) - f(0,01)) ean 4- 01

= f(ref 3,ref 4) Yval f(eo,t1) - 00
F(f(XY) > B X =1Y)1X) b (f(X,)Y) =B X=1Y)1X)-0)-0

D-0F (f(X,)Y) = (83— X:=1Y)!X) f(ref3,ref4) {Jya 401

211- ESSLLI-2004, Nancy The rewriting calculus iRHO

Aliases

et P< A in B c: (P>B)A

<= A thenB else C £ (true — B, false - (') A
neg £ (true — false, false — true)
A:B t (X -B)A X ¢&FVar(B

(Xl, .o Xn) .= (Al, .o An)

>
I

]
e
>

]
3

|| >

1A (ref X - X) A

212— ESSLLI-2004, Nancy The rewriting calculus iRHO

Aliases

|| >

et P< A in B
<~ A thenB else C

|| >

|| >

neg true — false, false — true)
A B

(Xl, .o Xn) .= (Al, .o An)

(
(true — B,false - C) A
(
(

|| >

X1 =4;...; X, = A,

|| >

1A 5 (ref X - X) A

Very good, dereferencing is just sugar!

212— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

IExamples

213— ESSLLI-2004, Nancy The rewriting calculus iRHO

Computing a Negation Normal Form

This function is used in implementing decision procedures, present in almost all
model checkers. The processed input is a implication-free languages of formulas

with generating grammar:

¢ =p | and(¢,) | or(¢, @) | not(e)

We present two imperative encodings: in the first, the function is shared via a
pointer and recursion is achieved via dereferencing. In the second, formulas are
shared too with back-pointers to shared-subtrees. Type decorations are omitted

214— ESSLLI-2004, Nancy The rewriting calculus iRHO

Imperative, |

This imperative encoding uses a variable SELF which contains a pointer to the

recursive code: here the recursion is achieved directly via pointer dereferencing,

assignment and classical imperative fixed-point in order to implement recursion.

Given the constant dummy, the function nnfl is defined as

(v - \
not(not(X)) — ISELF(X),
oA not(or(X,Y)) — and(!SELF(not(X)),!SELF(not(Y))),
ST] not(and(X,Y)) — or(ISELF(not(X)), ISELF(not(Y))),
and(X,Y) — and(ISELF(X), ISELF(Y)),
\ or(X,Y) - or(ISELF(X), ISELF(Y)))

and the imperative encoding is:

let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)

215— ESSLLI-2004, Nancy The rewriting calculus

iRHO

Imperative-with-Sharing, IS

This encoding uses a variable SELF which contains a pointer to the recursive code
and a flag-pointer to a boolean value associated to each node: all flag-pointers are
initially set to false; each time we scan a (possibly) shared-formulas we set the

corresponding flag-pointer to true. The grammar of shared-formulas is as follows:

bool ::= true | false

flag ::= bool ref
Y = ref @
¢ == p|and(flag,v,v) | or(flag, v, 9) | not(flag, 1))

216— ESSLLI-2004, Nancy The rewriting calculus iRHO

Imperative-with-Sharing, IS

Given the constant dummy, the structure nnf2 is defined as follows:
(v =% \
not(By, ref not(B3, X)) — ISELF(!X),
not(Bi,refor(By, X,Y)) — and(ref false, ISELF(ref not(ref false, X)),
ISELF (ref not(ref false,Y))),

not(By,ref and(B2, X,Y)) — or(ref false, ISELF(ref not(ref false, X)),
ISELF(ref not(ref false,Y))),

and(B, X,Y) — <= (neg ref B)
then (B, X,Y) := (true, !SELF(!X),!ISELF(!Y))
else and(B, X,Y),
or(B,X,Y) — <= (neg ref B)
then (B, X,Y) := (true, !SELF(!X),!ISELF(!Y))
\ else or(B,X,Y))
and the imperative encoding is:

let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF(v)

217- ESSLLI-2004, Nancy The rewriting calculus iRHO

Types

218— ESSLLI-2004, Nancy The rewriting calculus iRHO

Why a type system?

e Our type discipline assigns a semantical meaning to iRho-programs by
type-checking and hence, allows to catch some error before run-time

e The type system is powerful enough to ensure a type consistency, and to give a
type to a rich collection of interesting examples, namely decision procedures,
meaningful objects, fixed-points, term rewriting systems, etc

e This type system is, in principle, suitable to be extended with a subtyping
relation, or with bounded-polymorphism, to capture the behavior of
structures-as-objects, and object-oriented features

219- ESSLLI-2004, Nancy The rewriting calculus iRHO

What’s new in this type system

The main novelty, with respect to previous type systems for the (functional)

fRho is that term-structures can have different types, i.e.

FI_AAITl Fl_ABZTQ
I AB:n AT (Term—Struct)

The new kind of type 71 A 75 is suitable for heterogeneous (non-commutative)
structures, like lists, ordered sets, or objects

More flexible type discipline, where the structure-type 7 A 7 reflects the
implicit non-commutative property of “,” in the term “A, B", i.e. “A, B" does
not behave necessarily as “B, A"

More expressiveness w.r.t. previous typing disciplines on the fRho, in the sense
that it gives a type to terms that will not be stuck at run-time, but it
complicates the metatheory and the mechanical proof development

220- ESSLLI-2004, Nancy The rewriting calculus iRHO

Type Judgments

Recall Types and Contexts
Tu=b|T 7 |TAT|T ref

L:=0|I, X7 |, fir

The Type Judgments
I' . ok ' 7:0k T'H A, : T

. / . / . .
FHp:T I'Ho:I THP:7 THA:7T
1.e. well-typed contexts, types, values, environments, stores, patterns, and terms

221- ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

FI—PP:T

222— ESSLLI-2004, Nancy The rewriting calculus iRHO

—: Pattern Rules
I'1,oer, I's . ok

My, I'o b a7

F"PP12’7'1 F"PPQZTQ
F|_PP1,P21T1/\T2 (

(Patt—Start)

Patt—Struct)

223— ESSLLI-2004, Nancy The rewriting calculus iRHO

—: Pattern Rules
I'1,oer, I's . ok

My, I'o b a7

F|_PP12’7'1 F"PPQZTQ
F|_PP1,P227'1/\7'2 (

(Patt—Start)

Patt—Struct)

arr(11) = 1o — T3 FI—PfF:Tl I'E P:m
I’I—PfﬁP:'rg

(Patt—Algbr)

223— ESSLLI-2004, Nancy The rewriting calculus iRHO

-: Pattern Rules
Fl? a:T) FQ I_F Ok

Fla LT, I‘2 l_P Q. T

FI_PP1:’7_1 FI_PPQ:TQ
FI_prPQ:Tl/\TQ (

(Patt—Start)

Patt—Struct)

arr(r))=n—»m Ik fP:m THP:n
F'}fﬁpl’rg

(Patt—Algbr)

arr(T — ™) T — T

arr(ﬁ A\ 72) ATy —» (74 A 75){ < arr(7-1) = T3 — T4

and arr(m) =73 -+ T

223— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

I'E AT

224— ESSLLI-2004, Nancy The rewriting calculus iRHO

~: Variables, Constants, and Structures

I'y,0cr,1's . ok
I'jyoor, o ar 1

(Term—Start)

225— ESSLLI-2004, Nancy The rewriting calculus iRHO

~: Variables, Constants, and Structures

I'y,0cr,1's . ok
I'jyoor, o ar 1

(Term—Start)

' A:np ' B:m
FFAA,BITl/\TQ

(Term—Struct)

225— ESSLLI-2004, Nancy The rewriting calculus iRHO

—: Abstraction and Application

Dom(A) = FVar(P) I'NARLP:mm T'ARH A1
FFAP—DAA:Tl—DTQ

(Tern

226— ESSLLI-2004, Nancy The rewriting calculus iRHO

—: Abstraction and Application

Dom(A) = FVar(P) I'NARLP:mm T'ARH A1
FFAP—DAA:Tl—DTQ

(Tern

arr(m)=mn—-m ' A T'H BZTQ(

A o |
' A B :m Term—Ap

226— ESSLLI-2004, Nancy The rewriting calculus iRHO

—: Assign, Referencing, Dereferencing

I'E A: 7 ref I'E B:T ,
A Ik A:=B 2 (Term— Assign)

227- ESSLLI-2004, Nancy The rewriting calculus iRHO

—: Assign, Referencing, Dereferencing

I'E A: 7 ref I'E B:T ,
A IF A — 5 (Term— Assign)

FI—AA:T
' ref AT oref

(Term—Ref)

227- ESSLLI-2004, Nancy The rewriting calculus iRHO

—: Assign, Referencing, Dereferencing

I'E A: 7 ref I'E B:T ,
A IF A — 5 (Term— Assign)

FI—AA:T
' ref AT oref

(Term—Ref)

FI—AA:Tref
e 1A:r

(Term—Deref)

227- ESSLLI-2004, Nancy The rewriting calculus iRHO

IRh

- K R HH

Almost Routine (Hence Omitted)

228— ESSLLI-2004, Nancy The rewriting calculus iRHO

Typing the Two Imperative Encodings

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT

229— ESSLLI-2004, Nancy The rewriting calculus iRHO

Typing the Two Imperative Encodings

n

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT
let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)

let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF ()

229— ESSLLI-2004, Nancy The rewriting calculus iRHO

Typing the Two Imperative Encodings

n

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT
let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)
let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF ()

Ty 2dummy: A7y, SELF: A7y ref (with 71 2b — b)
' 2 dummy: 7\TQ,SELF: 7\7‘2 ref (with o2b ref — b ref)

229— ESSLLI-2004, Nancy The rewriting calculus iRHO

Typing the Two Imperative Encodings

n

If b type of ¢, and b ref type of ¥, and AT2 7 A --- AT
let SELF < ref dummy in let NNF < nnfl in SELF := NNF; NNF(¢)
let SELF < ref dummy in let NNF < nnf2 in SELF := NNF; NNF ()

Ty 2dummy: A7y, SELF: A7y ref (with 71 2b — b)

' 2 dummy: 7\TQ,SELF: 7\7‘2 ref (with o2b ref — b ref)
() Ty, X:Am,NNF:Am + NNF(¢): Ab

(IS) Tg, X: A7, NNF: A1y F NNF(3)) : Ab ref

229— ESSLLI-2004, Nancy The rewriting calculus iRHO

IRho;

Properties

230- ESSLLI-2004, Nancy The rewriting calculus iRHO

Properties (v'= proved by the proof assistant Coq)

Determinism)’ If 0 -pF A o A’ -0’ and o-p - A Jya A7 - 0", then A/ = A",
p Vv Vv Vv Vv

and ¢/ = o'
Unique Type)Y If ' = A : 7, then 7 is unique;
A

(Coherence)” o - p -con I if there exist two sub-contexts I'y, and I's, such that
Fl,rg = P, and I’ |_0 o . Pl, and I l_p [FQ;

(Subject-reduction)” If () HA:7,and 0-0F Al A, - o, then there exists I
which extend I, such that IV, 0 : 0k, and IV K, A, : 7.

(Type-soundness) If (- A: 7, then 0 -0+ A | Ay
(Type-reconstruction) It is decidable if, for a given 7, is it true that) | A : 7;

(Type-checking) It is decidable if there a type 7 such that 0 5 A : 7.

231- ESSLLI-2004, Nancy The rewriting calculus iRHO

Conclusion

e A special emphasis has been put in our work on the design of the
static/dynamic semantics. We always had in mind the main objectives of a
conscious implementor

a “sound” machine (the interpreter)
a “sound” type system (the type checker), such that
“well typed programs do not go wrong" [Milner],
both semantics being suitable to be specified with nice mathematics,
to be implemented with high-level programming languages,
and to be certified with modern and semi-automatic theorem provers, like
Coq

e The paper is quasi a “technical manual” of the softwares (2)

e See 1IMprho.ps, and 1Imprho.scm, and TypedImpRho.v

232— ESSLLI-2004, Nancy The rewriting calculus iRHO

imprho.ps
imprho.scm
TypedImpRho.v

DIMPRO

233—- ESSLLI-2004, Nancy The rewriting calculus iRHO

CAL

) &

Lists in the A-calculus vs in the p-calculus

235— ESSLLI-2004, Nancy

A-calculus p-calculus
cons | A XYZZXY | X —-Y — Cons(X Y)
car | \Z.Z(AXY.X)| Cons(XY) > X
cdr | AZ.Z(AXYY) Cons(X Y) =Y

The rewriting calculus

Explicit substitutions

Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —-> X;;

236— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —> X;;

#car [];;
Exception: Match_failure (", 12, 42).

236— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —> X;;

#car [];;
Exception: Match_failure (", 12, 42).

#let car 1 = match 1 with
[] -=> failwith ¢‘error in car’’
|x::m -> x;;

236— ESSLLI-2004, Nancy The rewriting calculus

Explicit substitutions

Run Time errors in O’ Caml

#let car 1 = match 1 with
X::m —> X;;

#car [];;
Exception: Match_failure (", 12, 42).

#let car 1 = match 1 with
[] -=> failwith ¢‘error in car’’
|x::m -> x;;

[1 Need to deal with error “by hand”

236— ESSLLI-2004, Nancy The rewriting calculus

Explicit substitutions

237— ESSLLI-2004, Nancy

Errors in the p-calculus

car 2 Cons(X,Y) — X

(Cons(X,Y) — X) Empty
—, |Cons(X,Y) < Empty|X

The rewriting calculus

Explicit substitutions

Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):

Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt

238— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):
Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt
In plain p-calculus when we apply the rule to the term
Brother(Person(Name(Liz),Father(John)), Person(Name(Bob), Father(Jim)))

we obtain as result the term

238— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):
Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt
In plain p-calculus when we apply the rule to the term
Brother(Person(Name(Liz),Father(John)), Person(Name(Bob), Father(Jim)))

we obtain as result the term

[Brother(Person(Name(X),Father(Z)),Person(Name(Y), Father(Z7))) <
Brother(Person(Name(Liz), Father(John)),Person(Name(Bob), Father(Jim))))|tt

238— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Errors in the p-calculus

Checking if two persons are brothers (i.e. they have the same father):

Brother(Person(Name(X),Father(Z)),Person(Name(Y),Father(Z))) — tt

In plain p-calculus when we apply the rule to the term

Brother(Person(Name(Liz),Father(John)), Person(Name(Bob), Father(Jim)))

we obtain as result the term

[Brother(Person(Name(X),Father(Z)),Person(Name(Y), Father(Z7))) <
Brother(Person(Name(Liz), Father(John)),Person(Name(Bob), Father(Jim))))|tt

while in p, — calculus-calculus the result is

(Z < John A Z < Jim) tt

238— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

How to represent programs

e Pattern Matching (possibly non-linear).
e Typed Recursion and Strategies ...to put link

e |Imperative features ...to put link

239— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]

240— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]

e to represent proof-terms of rewriting derivation [Nguyen]

240— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]
e to represent proof-terms of rewriting derivation [Nguyen]

e to have a precise control over matching and constraints. Better deal of errors.

240— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Explicit constraint handling

What for?

e to implement the p-calculus [Rogue:Stump]

e to represent proof-terms of rewriting derivation [Nguyen]

e to have a precise control over matching and constraints. Better deal of errors.
How?

e by making explicit matching computations

e by making explicit application of substitutions

240— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Explicit matching decomposition

e Decompose functional symbols.

e Decompose the structure ;".

e Do not decompose: Abstraction and Application.

241- ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Constraint application

What about?

(X < aAa<bX

242— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Constraint application

What about?

(X < aAa<bX

[1 Do not apply constraint without solution

242— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Constraint application

What about?

X < aha<bX

[1 Do not apply constraint without solution

From constraints to substitutions

[X < AA_ |B

242— ESSLLI-2004, Nancy The rewriting calculus

Explicit substitutions

Constraint application

What about?

X < aha<bX

[1 Do not apply constraint without solution

From constraints to substitutions

[X < AN 1B — [X< A}B

242— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Syntax of the p,-calculus-calculus

Terms AB = X (Variables)
K (Constants)
A— B (Abstraction)
A B (Fonctional application)
C B (Constraint application)
A, B (Structure)
{X <« A}B (Substitution application on terms)

Constraints €,D == AKDB (Match-equation)
| CAD Conjonctions of contraints)
|

(
{X <« A}C (Substitution application on const.)

243— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Semantics of the p,-calculus-calculus

From rewrite rules to constraints
(p) (A—B)C ~ (A<0)B
(9) (A;B) C — AC;BC

244— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

(p)
()

(Decompose;)
(Decomposer)
(NGood)

244— ESSLLI-2004, Nancy

Semantics of the p,-calculus-calculus

From rewrite rules to constraints

(A—- B)C
(A;B) C

From constraints to substitutions

Decomposition
A1; A2 K Bjp; Bo
f(A1...Ap) K f(B1...Bp)
f(Al e An) < g(Bl . Bn)

—
—

L

The rewriting calculus

(A C)B
AC;BC

Al < Bl AN AQ < BQ
A1 << Bl VANERVAN An << Bn
f(Al N An) <<ng g(Bl o« o Bn)

Explicit substitutions

(p)
()

(Decompose;)
(Decomposer)
(NGood)

(T'oSubst)

244— ESSLLI-2004, Nancy

Semantics of the p,-calculus-calculus

From rewrite rules to constraints

(A—- B)C
(A;B) C

From constraints to substitutions

Decomposition
A1; A2 K Bjp; Bo
f(A1...Ap) K f(B1...Bp)
f(Al e An) < g(Bl . Bn)
From constraints to substitutions
(X <K< AANC)B

—
—

L

The rewriting calculus

(A C)B
AC;BC

A1<<Bl/\ A2<<BQ

A1<<B1/\.../\An<<Bn
f(Al...An) <<ng g(Bl...Bn)

(C)({X < A}B)
if X € Dom(C)

Explicit substitutions

Semantics of the p,-calculus-calculus

From rewrite rules to constraints

(p) (A—B) C ~ (A<O)B
(9) (A;B) C — AC;BC
From constraints to substitutions

Decomposition
(Decompose;) Aq;As K Bjp; Bs — A1 < BN Ay K By
(Decomposer) f(A1...Ap) K< f(B1...Bp) — A1 < BIAN...NA, K By
(NGood) f(A1...An) < g(B1...Bp) — f(A1...Ap) <" g(B1...Byp)

From constraints to substitutions
(ToSubstn) (X < ANC)B — (O{X K A}B)

if X € Dom(C)
Substitution applications

(Replace) {X < A} X — A
(Eliminatey) {X K< A}Y — Y

if XAY
(Eliminate r) {X < A}f — f
(Share;) {X < A}(Bs3(C) — {X <K A}Bs{X K A}C
(Share(y) {X < A}((B)C) — {X KAIB){XKA}C
(Share—) {X <K A}(B —- C) — B {X <K A}C
(Share) {X < A}(BkK O) — BKA{XKAC
(Sharep) {X < A}(CAD) — {X <K AC AN A{X K AD

244— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

245— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

—5 not (and (X, Y)) < not (and (tt, ff)) | or (not (X) ,not (Y))

245— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

— _not (and (X,Y)) < not (and (tt, ff)) } ot (not (X),not (YV))
— Decompose ianb (X,Y) < (ano (tt, §f) } ot (not (X),not(Y))

245— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

— _not(anb (X,Y)) < not (an0 (tt, §f))}Ot (not (X),not (Y))
— Decompose and (X,Y) < (ano (tt, ff)}Ot (not (X),not(Y))
— Decompose X<KHHNY K ff} ot (not (X),not(Y))

245— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

— _not (and (X,Y)) < not (and (tt, ff)) } ot (not (X),not (YV))
— Decompose and (X,Y) < (and (tt, ff) } ot (not (X),not(Y))

— Decompose XKUNY K ff} ot (not (X),not(Y))

— Subst X < tt} {Y < ff}or (not (X) not(Y))

245— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Example

(not (and (X,Y)) — ot (not (X),not(Y))) not(and (t,ff))

- not (and (X, Y)) < not (and (t, ff)) | ot (not (X) , not (1))
— Decompose and (X, Y) < (ano (tt, ff) } ot (not (X),not(Y))

— Decompose XKUNY K ﬁ} ot (not (X),not(Y))

— Subst X < tt} {Y < ff}or (not (X) not(Y))

H};ropagation (0t (110{ (tt)) not (ﬁ)))

[1 Need to compose, to able to combine substitutions, to limit term traversal.

245— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

Properties of the p,-calculus-calculus

e Well behaved properties for substitution application.
e Termination of the constraint handling part.

e Confluence of the calculus.

e Conservativity

e Simulating the A-calculus,

246— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

The pyc-calculus

(GI) X< ANY KB — X<ANY KB
if X#4Y

247— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

The pyc-calculus

(GI) X< ANY KB — X<ANY KB

if XAY
(Good) Ce N D8 — C&8 N\, DE

if Dom(C8) N Dom(DE) =)
(ToSubst) [C8 ANDJA — [D]{Cs}A

247— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

The pyc-calculus

(GI) X< ANY KB — X<ANY KB

if XAY
(Good) Ce N D8 — C&8 N\, DE

if Dom(C8) N Dom(DE) =)
(ToSubst) [C8 ANDJA — [D]{Cs}A

if Dom(C8®) N Dom(D) =0

247— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

The pyc-calculus

To deal with compositions: the pyc-calculus

(Compose) {V}({p}A) — {{10rp}({V}14)

248— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

The pyc-calculus

To deal with compositions: the pyc-calculus

(Compose) {V}({p}A) — {{0rp}({V}A)

(Compose) {WH({prAd) — {0 Ag{U}p} A
[J Properties (confluence AC — CiME)

249— ESSLLI-2004, Nancy The rewriting calculus Explicit substitutions

CAL

) &

Graphs in the p-calculus

[1 improve efficiency

[1 save space (sharing subterms)
[] save time (reduce only once)

* - +
VAN /
T S *
! /N
Y €T Y

251—- ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Graphs in the p-calculus

[1 improve efficiency

[1 save space (sharing subterms)
[] save time (reduce only once)

[l Improve expressiveness

[1 infinite data structures

* - +
VAN /
X S * j
| SN /
Y T (7 1

251—- ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

The syntax of p,-calculus

Terms g = X (Variables)
K (Constants)
G — G (Abstraction)
G g (Functional application)
Gg,g (Structure)
G €] (Constraint application)
Constraints € = ¢ (Empty constraint)
| X =G (Recursion equation)
| G < G (Match equation)
| C,C (Conjunction of constraints)

252— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Some p,-terms

AN SN
9__ "9 * +
VAN ()
2 X x
flx,y) [x=9),y = g(x)] 2x2) = ((y+y) [y =)

253— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

The semantics of p,-calculus

(p) (G1 — G2) G3 —p G2 [G1 K G3]
(G1 - G2) [E] G —p G2[G1 K G3, E]
(6) (G1,G2) G3 —s G1 G3,G2 G3

(G1,G2) [E] G3 —s (G1 G3,G2 G3) [E]

254— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

The semantics of p,-calculus

(p) (G1— G2) G3
(G1 — G2) [E] G3

(6) (G1,G2) G3
(G1,G2) [E] G3

—p
—p
5

4

G2 [G1 K G3]

G2 [Gl < G3a E]
G1 G3,Ga G3

(G1 G3,G2 G3) [E]

(propagate) G1 < (G2 [E2]) —p
(decompose) K(Gq,...,Gn) < K(G), ..., G;@) —dk
(eliminate) K <K K, E e
(solved) r <K G FE —

254— ESSLLI-2004, Nancy

The rewriting calculus

G1 K Ga, E»

G1 < GY,...,Gp < G
E

x=G,E ifrx & DV(E)

Graphs in p-calculus

The semantics of p,-calculus

(p) (G1—G2) G3 —p G2 [G1 < G3]

(G1— G2) [E] G —p G2 [G1 < Gg, E]
(6) (G1,G2) G3 —s G1G3,G2 G3

(G1,G2) [E] G3 —s5 (G1 G3,G2 G3) [E]
(propagate) G1 < (Gg [Eq]) —p G1 < G, Ey
(decompose) K(G1,...,Gn) < K(GY,...,Gl) —ag4 G1<G|,...,Gn <G
(eliminate) K <K K, E —e FE
(solved) r <L G,E —s x==G,E ifx¢g DV(E)
(external sub) Ctxly] [y = G, E] —es Ctx[G] [y = G, E]

(acyclic sub) G [Gp K Cix[yl,y = G1, E] —ac G [Go K (x[G1],y = Gy, E]
ifx >y, Ve € FVar(Gy)
where K € {=,<K}

(garbage) G[E,z=G] —gc G [E]
if x & FVar(E)UJ FVar(G)
G [€] —gc G
(black hole) Ctx[z] [x =0 x, E] —pp Ctx[e] [z =6 z, E]
G [y - CtX[JZ], L =o T, E] —wn G [y — CtX[O], L =o T, E]
ify >«

254— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Example - Multiplication

% —> -+ *
PN / VAN
X S * 1 S
¢ SN !
(7 T Y 1

255— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Example - Multiplication

(* s(y) = (x1+xy + 21 [11 = x])) (2 x5(2) [z =1])
r1xy + o [z =] [1xs(y) < (2*s(2) [z =1])]
x1*xy+ a1 v =] [xxs(y) K€ zxs(z),z = 1]

1J

255— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Example - Multiplication

% —> -+ *
VAN / 7N
X S * 1 S
| SN !
Y T Y 1

(% s(y) = (z1 %y + x1 [11 = 2])) (2 % 5(2) [z = 1])
5 x1*xy+ a1 [v1 =x] [xxs(y) € (z*xs(z) [z = 1])]
—p T1xy+ T [T =2x] [T*xs(y) K z*5(2),z =1]
e T1xy+ o= v <K zy Kz, 2 = 1)
= Tixyta[zvr=z] [t =29y =22 =1]

255— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Example - Multiplication

% —> -+ *
VAN / 7N
X S * 1 S
| SN !
Y T Y 1

(+s(y) = (z1xy + a1 [11 = 2])) (2% 5(2) [z =1])

o x1*xy+x (v =] [z xs(y) K€ (zx5(2) [z =1])]
—p T1xy+ T [T =2x] [T*xs(y) K z*5(2),z =1]
. 1yt (=] <K zy K z,2 = 1]

= Tixyta[zvr=z] [t =29y =22 =1]

s (2xz42)[rr=2z]lxr=2,y=2,2=1]

e (zrz42) [m=2] [z =1

e (zx2+2) [z = 1]

255— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Example - Multiplication

% —> -+ *
VAN e 7N
X S * 1 S

¢ /N |

(% s(y) = (z1 %y + x1 [11 = 2])) (2 % 5(2) [z = 1])
— x1*xy+ a1 [v1 =x] [xxs(y) € (z*xs(z) [z = 1])]
—p X1 ¥ Y+ T [T [z * s(y) K€ z *xs(z),z = 1]
=k Tk Y+ X [T [z <€ z,y K z,2 = 1]

Ty *x Y+ x1 [T x| [x =2,y =2,z = 1]

e (zxzt) = fe =gy =25 =] (
Al =1) :
] (

I
8

(zx 2z 4+ 2) [T
e (zxz42) |z

—

JJ

255— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Example - Non-linearity

Success:
f(z,z) [r =y] < f(a,a)
—s f(y,y) [z =yl < fla,a)
—ye fy,y) < f(a,a)

256— ESSLLI-2004, Nancy The rewriting calculus Graphs in p-calculus

Success:

Failure:

256— ESSLLI-2004, Nancy

Example - Non-linearity

flz,z) [x = y] < f(a,b)
fy,y) [z =y] < f(a,b)
fly,y) < f(a,b)
y<La,y<b

The rewriting calculus

Graphs in p-calculus

CAL

) &

“Untyped” Matching theories |

Empty theory Ty of equality (up to a-conversion)

T =T FT73="13 =7, =T
T =T, (Trans) F T =T (Symm)
=7, =7
FTsr, = Tsrzy), (Context) P = (Befl)
TlfTﬂp: term 77 with term 75 at position p BACK

258— ESSLLI-2004, Nancy The rewriting calculus Matching theories

“Untyped” Matching theories ||

Theory of Associativity T 4(f) (resp. Commutativity T (y)) is defined as Ty plus:

F (T T) T) = [(Th, f(To, T3)) (25509

Comm)

FITT) = [T Th) |

BACK

259— ESSLLI-2004, Nancy The rewriting calculus Matching theories

“Untyped” Matching theories |ll

Theory of Idempotency Ty is defined as Ty plus the axiom

F AT, T) = ¢ Lem)

Theory of Neutral Element Ty ;0 is defined as Ty plus

0—Left) 0—Right)

F 0.7 =7\ FAT.0) =T

BACK

260— ESSLLI-2004, Nancy The rewriting calculus Matching theories

“Untyped” Matching theories IV

The Theory of Stuck T is defined as TN(’stk) plus the axioms

\V/(9176’2, \V/C, Aezl—»pasc = C’;éPﬁl
F [P < A]B = stk

I+ stk 7 = stk
Examples
- [3 < 4]5 = stk
|3 < 3|5 = stk I [3 < X]5 = stk
Detecting matching failures BACK

261- ESSLLI-2004, Nancy The rewriting calculus Matching theories

“Untyped” Matching theories V

Theory of the Lambda Calculus of Objects T ¢y, is obtained by considering the

symbol “" as associative and stk as its neutral element, i.e.:

Taomj = T4y U T

Theory of the Object Calculus Ty, is obtained by considering the symbol “," as

associative and commutative and stk as its neutral element, 7.e.:

Tg(%j = TA(7) U TC(,) U Tstk — TAObj U TC’(,)

THEORIES RECORDS

262— ESSLLI-2004, Nancy The rewriting calculus Matching theories

The Matching Algorithm for T

The matching substitution solving a matching equation can be computed by the
following matching reduction system:

(Appl) (Ti To)=<(Ts Ta) ~ Ti<Ts A To<T,

(Struct) (Th,72)=<(T3,Ts) ~ Th<T3 N <Dy

Example
f(X, V)<L f(a,b) ~ X<a AN Y—=<b successful
f(X, X)<Lf(a,b) ~ X<Ka AN Y=<b unsuccessful

BACK

263— ESSLLI-2004, Nancy The rewriting calculus Matching theories

CAL

) &

The Lambda Calculus of Objects \Obj

Abstract syntax

M,N == c¢|X | AX.M|MN |
O Me—n=N)[(Mc—tn=N)|[M<n|
Sel(M, m,N)
Small-step semantics («+ = «— or «+)
(Beta) AX.M)N ~ {X/N}M
(Sel) M<m ~~ Sel(M,m,M)
(Next) Sel((M «<xn=N),m,P) ~ Sel(M,m,P) (m # n)
(Succ) Sel({(M «<xn=N),n,P) ~ NP

265— ESSLLI-2004, Nancy The rewriting calculus Lambda Calculus of Objects

Compiling A\Obj in p-calculus

|[MN]

[<>1]
[<M+——n=N >]

[<M—~+n=N >]|
[M” <="m]
[Sel(M, m, N)]|
Theorem: If M ~ o IV,

266— ESSLLI-2004, Nancy

C

X

stk

L | | 1 1 1 | > 11>

—+
>
Q)
)

[M] [N]

kill,,([M]),n — [N]
[M]
|M]

[M] TIPBT o [V

,n— [N]
m=[M] m [M]
m [N]

Example with object update

The rewriting calculus

Lambda Calculus of Objects

C AL

[

The Combinatory Reduction Systems

[1 The syntax: abstraction and metavariables

MTers := X | | X|MIers | F(MTers, ..., MIers) | Z(M1ers, ..., M1crs)

268— ESSLLI-2004, Nancy The rewriting calculus Combinatory Reduction Systems

The Combinatory Reduction Systems

[1 The syntax: abstraction and metavariables

MTers := X | | X|MIers | F(MTers, ..., MIcrs) | Z(MIers, ..., MIers)

[0 The set of rewrite rules R ={..., L = R,...}

L and R are closed metaterms;

L is of the form f(Ai,..., A,) with Ay, ..., A, metatermes;
MV(L) O MV(R);

L is a Pattern : Yw LfZ(xl,...,xnﬂw x; bound and distinct.

268— ESSLLI-2004, Nancy The rewriting calculus Combinatory Reduction Systems

The Combinatory Reduction Systems

[1 The syntax: abstraction and metavariables

MTers := X | | X|MIers | F(MTers, ..., MIcrs) | Z(MIers, ..., MIers)

[0 The set of rewrite rules R ={..., L = R,...}

L and R are closed metaterms;

L is of the form f(Ai,..., A,) with Ay, ..., A, metatermes;
MV(L) O MV(R);

L is a Pattern : Yw LfZ(xl,...,xnﬂw x; bound and distinct.

O Assignment : o0 ={(Z1,&1),...,(Zn,&n)} s.t. Z; € MV(L),|Z;]| = |&]
[] Substitute : £ = A z1...x.u s.t u s a CRS-term

[] Substitution at the meta-level.

Back to encodings

268— ESSLLI-2004, Nancy The rewriting calculus Combinatory Reduction Systems

Translation examples

Abstraction:
2] Z ()

Patterns:
L = |z]g([y]Z(z,y))

Assignment into rho-substitution:

o={Z \r.x}

Rewrite rules into rho-terms:
Beta :
App([x]Z(x), Z2") = Z(Z')

269— ESSLLI-2004, Nancy

The rewriting calculus

T —/x

[L] =2 — g(y = (Z = y))

lol ={Z/z — x}

[Beta] :
App(x — Z x, 2" = Z 7'

Back to encodings

Combinatory Reduction Systems

CAL

) &

Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]

271- ESSLLI-2004, Nancy The rewriting calculus P TS

Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]

e I contains the types of the free variables of M, and [¢] is a canonical
interpretation of ¢ in \;

271- ESSLLI-2004, Nancy The rewriting calculus P TS

Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]

e I" contains the types of the free variables of M, and [¢] is a canonical
interpretation of ¢ in \;

e [(-reduction (Ax:0.M)N —3 M{N/x} in A; as cut-elimination in £;

271- ESSLLI-2004, Nancy The rewriting calculus P TS

Lambda Calculi a la Church and Logics

e Lambda abstractions are decorated with types, e.g. Ax:0.M

e Type Systems \; vs. Logic Systems L; via the well-known Curry-Howard
Isomorphism “proofs-as-(\)-terms € propositions-as-types”

e Each logical system L; correspond to a type system \;, and for every formula ¢

Feo o = M. Ty, M :|p]

e I" contains the types of the free variables of M, and [¢] is a canonical
interpretation of ¢ in \;

e [(-reduction (Ax:0.M)N —3 M{N/x} in A; as cut-elimination in £;

e Subject Reduction Theorem as a correction criterion for cut-elimination BACK

271- ESSLLI-2004, Nancy The rewriting calculus P TS

The Famous Barendregt’s \-cube and its 8 logic systems

AW APw PROPw ~ PREDw
)\2/ AP2 PROP2/ - PREDz/
AW APw PROPw ~ PREDw
)_D/ -)\P/ PROP/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED

272— ESSLLI-2004, Nancy The rewriting calculus

TS

The Famous Barendregt’s \-cube and its 8 logic systems

AW APw PROPw - PREDw
)\2/ A\P?2 PROP2/ - PREDz/
AW APw PROPw ~ PREDw
)_D/ -)\P/ PROP/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED

272— ESSLLI-2004, Nancy The rewriting calculus

TS

The Famous Barendregt’s \-cube and its 8 logic systems

AW APw PROPw - PREDw
)\2/ A\P?2 PROP2/ - PREDz/
AW APw PROPw ~ PREDw
)_D/ -)\P/ PROP/ - PRED/
PROP proposition logic PRED predicate logic
PROP2 | second-order PROP PRED2 | second-order PRED
PROPw | weakly higher-order PROP | PREDw | weakly higher-order PRED
PROPw | higher-order PROP PREDw | higher-order PRED

272— ESSLLI-2004, Nancy The rewriting calculus

TS

From Barendregt’s \-cube to Pure Type Systems (PTSs)

e Further generalization of various type systems invented independently by
Berardi and Terlouw in '89

e Many systems of typed A-calculus a la Church can be seen as PTSs

e One of the success of PTSs is concerned with logics: the 8 logical systems can
be described/generalised as a simple unique PT'S

BACK

273— ESSLLI-2004, Nancy The rewriting calculus P TS

From Barendregt's \-cube to Pure Type Systems (PTSs)

e Further generalization of various type systems invented independently by
Berardi and Terlouw in '89

e Many systems of typed A-calculus a la Church can be seen as PTSs

e One of the success of PTSs is concerned with logics: the 8 logical systems can
be described/generalised as a simple unique PT'S

e Another one is the compactness of the notation of P TSs which greatly allows to
factorise and simplify proofs in metatheory, in the style “one theorem fits all!”

BACK

273— ESSLLI-2004, Nancy The rewriting calculus P TS

From Barendregt's \-cube to Pure Type Systems (PTSs)

e Further generalization of various type systems invented independently by
Berardi and Terlouw in '89

e Many systems of typed A-calculus a la Church can be seen as PTSs

e One of the success of PTSs is concerned with logics: the 8 logical systems can
be described/generalised as a simple unique PT'S

e Another one is the compactness of the notation of P TSs which greatly allows to
factorise and simplify proofs in metatheory, in the style “one theorem fits all!”

e Examples of well-known PTSs are A\AHOL, APRED, \CC (a.k.a. the \-cube)

BACK

273— ESSLLI-2004, Nancy The rewriting calculus P TS

More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs

274— ESSLLI-2004, Nancy The rewriting calculus P TS

More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...

274— ESSLLI-2004, Nancy The rewriting calculus P TS

More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...

e The degree of automatization of such proof assistants depends also on the
capability of simplifying/reduce terms

274— ESSLLI-2004, Nancy The rewriting calculus P TS

More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented

via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...

e The degree of automatization of such proof assistants depends also on the
capability of simplifying/reduce terms

e The "“Poincaré principle” can be (3td)-reductions, structural well-founded
recursion, provable equality, or some arbitrary notion of reduction

274— ESSLLI-2004, Nancy The rewriting calculus

TS

More Pragmatically ...

e Almost all proof assistants and relating metalanguages based on the

proposition-as-type principle, have a firm theoretical basis in logics represented
via PTSs

e AUTOMATH, NUPRL, HOL, LEGO, (TW)ELF, AGDA, ISABELLE, COQ,
MIZAR, ACL2, PVS ...

e The degree of automatization of such proof assistants depends also on the
capability of simplifying/reduce terms

e The "“Poincaré principle” can be (3td)-reductions, structural well-founded
recursion, provable equality, or some arbitrary notion of reduction

e The more reductions principles you have in the metalanguage, the more
“powerful” the proof assistant is ... BACK

274— ESSLLI-2004, Nancy The rewriting calculus P TS

P TS: One-step, Many-steps, Congruence

Let Ctx|—] be any term 7 with a “single hole” inside, and let Ctx|A] be the result
of filling the hole with the term A;

1. the one-step evaluation — is defined by the following inference rule, where

—B =" U —, U —s:

A —» B
Ctx[A] s Ctx[B]

(Ctx[=])

2. the many-step evaluation ;s and congruence relation =5 are respectively
defined as the reflexive-transitive and reflexive-symmetric-transitive closure of

275— ESSLLI-2004, Nancy The rewriting calculus P TS

(Al)z:ln

276— ESSLLI-2004, Nancy

|| >

|| >

Abbreviations and Priorities

Ai,---, A, structure/object

A*B*A Kamin's self-application

The rewriting calculus

TS

Abbreviations and Priorities

|| >

(AZ)Zzln
A.B

Ai,---, A, structure/object

|| >

A*B*A Kamin's self-application

Operator | Associate | Priority

., Right >
Vi Right >
_<__].-| Right >
e _eft >

276— ESSLLI-2004, Nancy The rewriting calculus

.. still substitutions

o We let
Dom(o) =4{Xy,..., X}
and
CoDom(A) = U m]:Var(AZ-)

1=1..

e A substitution o is independent from A, written O'yf A if
Dom(o) N Dom(A) =)

and

CoDom(o) N Dom(A) =)

277—- ESSLLI-2004, Nancy The rewriting calculus

TS

Termination of Alg

e The relation ~+ is defined as the reflexive, transitive and compatible closure of

D

o If T~ T’ with T’ a matching system in solved form then, we say that the
matching algorithm Alg (taking as input the system T) succeeds

e The matching algorithm is clearly terminating (since all rules decrease the size
of terms) and deterministic (no critical pairs), and of course, it works modulo
a-conversion and Barendregt's hygiene-convention

e Starting form a given solved matching system of the form

T2 6\ Xi«iiAi A\ aj«ijaj

...n j=0...m

the corresponding substitution {A1/X;7--- A, /X, } is exhibited.

278— ESSLLI-2004, Nancy The rewriting calculus P TS

Functional P TS

We require all specifications to be functional, i.e. for every si, s2, 55, 53,55 € S,
the following holds:

(s1,82) €)A and (sq1,s5) €)A implies s5 = s,
(81,82,83>€R and (Sl,SQ,Sg)ER implies s3

Furthermore, we let ST denote the set of topsorts, i.e.
S'={secS|VseS. (s,5) & A}
and define a variant of delayed matching constraint as follows:

B ifBeS'

Tp_
A<a C] .B = { [A <A C].B otherwise

BACK

279— ESSLLI-2004, Nancy The rewriting calculus P TS

C AL

D;

Simple Functional Fixpoint

I Efix:(b—b b) — b, and A = X:b — b, and
Q2fix(X) —a X fix(X). We typecheck I’ = Qfix(Q2) : b

IAL fix:(b—b)—=b I AL X:b—b
AR X:b—b IAFR fix(X):b I'Hfix:(b—b)—b
AR fix(X) : b AR X fix(X):b ' 2:b—b
' Q:b—b ' fix(2) : b
TE Qfix(Q) : b
The reader can verify that our interpreter diverges, i.e.
0+ Q fix() {va stack overflow
281- ESSLLI-2004, Nancy The rewriting calculus DIMPRO

Encoding Term Rewrite Systems

e However, a suitable recursion operator in the style of the object-oriented
encoding allows us to simulate the global behavior of a TRS Let the constants
rec and add, and let

obj.meth 2 ((obj meth) obj)

us 2 rec(S) — add(0,Y) — Y,
phs = (rec(S) — add(suc(X),Y) — suc(S.rec add(X,Y)))

282— ESSLLI-2004, Nancy The rewriting calculus DIMPRO

A Nice Circle ... and back

O-O'pl_FlLvalf'O_l

0-1',0|_Alivalaf'0-2 0'2|_<f'a/>licallv'0-3
¢ oo pEF Alav-os

(Red_pv)

e (define-method (Eval::value t::App env) ;()
(with-access::App t (F A)
(let ((f (Eval F env)))
(let ((a (Eval A env)))
(call £ a)))))

e Mutual Inductive eval : expr->env->store->value->store->Prop :=
| evalApp: (F:expr) (e:env) (s:store) (f:value) (sl:store)
(eval F e s £ s1) —> (A:expr) (a:value) (s2:store)
(eval A e s1 a s2) -> (v:value) (s3:store)
(call £ a s2 v s3) ->
(eval (App F A) e s v s3)

283— ESSLLI-2004, Nancy The rewriting calculus DIMPRO

	
	1-- Introduction
	A simple game
	What are the basic operations that have been used?
	Let us do simple math: just addition in Peano arithmetic (1)
	Let us do simple math: just addition in Peano arithmetic (2)
	Let us do simple math: just addition in Peano arithmetic (3)
	What are the basic operations that have been used? (2)
	fibonacci
	Graphical Rewriting
	Ecological Rewriting
	/etc/sendmail.cf
	Equational description of a sorting algorithm
	Back with the simple game
	Alternative Rings
	Can we prove by rewriting the Moufang Identities?
	An additive group G is defined by the set of equalities
	An equivalent deterministic term rewrite system
	XSLT
	XSLT: example 1/3
	XSLT: example 2/3
	XSLT: example 3/3
	The 4 basic ingredients of a rewriting step: 1- The rewritten objects
	The 4 basic ingredients of a rewriting step: 2- Substitution
	The 4 basic ingredients of a rewriting step: 3- Matching
	The 4 basic ingredients of a rewriting step: 4- Replacement
	How does (first-order) rewriting work?
	What is rewriting? (1/2)
	What is rewriting? (2/2)
	Important: Rewriting is always in need of a strategy
	Examples using ELAN
	Example 1: Very simple ...
	Example 2: propositional sequent calculus
	The true code
	Strategies
	The resulting proof term
	Example 3: 8 queens
	Module nqueensAC
	Related systems
	Some applications
	Syntactic Matching: A rule based description
	Find a match
	Theorem
	Aims of the -calculus
	For the rewriting RELATION
	For the rewriting CALCULUS
	For the rewriting calculus
	For the rewriting calculus
	For the rewriting calculus
	For the rewriting calculus
	For the rewriting relation
	For the rewriting calculus
	For the rewriting calculus
	Related topics and works
	(Some) Recommended Readings
	The syntax and semantics of the untyped rewriting calculus
	The Untyped Syntax
	Some -terms
	Some abbreviations
	Matching Equations and Solutions
	Reduction relies on matching power
	The Small-step Reduction Semantics
	The Small-step Reduction Semantics
	Intuition on the small-step Semantics
	Some -reductions
	Simple Success Reduction
	Simple Failure Reduction
	On the (non-)confluence
	On the (non-)confluence
	Big-step Operational Semantics
	Big-step Natural Semantics I
	Big-step Natural Semantics II
	-ample: Two Natural Deductions
	The Rationale of Optimistic and Pessimistic Machines
	Why a new calculus?
	A calculus with more explicit features
	
	Target formalisms
	Compiling the -calculus into the -calculus
	Rewriting: The relation, the logic and the calculus
	Rewriting: The relation, the logic and the calculus
	Rewriting: The relation, the logic and the calculus
	
	Rewriting: The relation, the logic and the calculus
	Going from rewrite rule to rewriting system: redFor the rewriting reduction
	Going from rewrite rule to rewriting system: redIn the -calculus
	Encoding Rewriting
	Representation of Higher-order term rewriting (CRS)
	 Translation of CRS in the -calculus
	Representation of Higher-order term rewriting (CRS)
	-calculus and records
	-calculus and objects
	A ``ping-pong'' object
	Functional object update
	Imperative object update
	An object with ``self-extension''
	Inheritance in the -calculus (Abadi & Cardelli encoding of classes-as-objects)
	The Para object: labels as first-class entities
	The object Daemon: methods as first-class entities
	The Object Calculus Obj
	Compiling Obj in -calculus
	Typed rewriting calculi
	The new syntax - contexts, etc
	The Type System
	Typing properties
	Normalization failure (cont'd)
	(Well-typed) Encoding of Rewriting in the -calculus
	-calculus and objects
	Typed objects
	Detecting matching failures: the symbol stk
	Encoding rewriting - Addition over Peano integers
	Encoding rewriting in the -calculus
	Example - A simple calculator
	Example - Computing the length of a list
	Logical inconsistency
	Dependent type discipline
	Pure Pattern Type Systems
	
	From Lambda-calculus to Rewriting-calculus
	
	The Uncle Pat
	
	The Lady Match
	bluePmygreen2greenTredS: Notational Convention
	bluePmygreen2greenTredS: Tricky !
	bluePmygreen2greenTredS: Tricky !
	
	Thanks to TAL's Group (Cornell)
	Typed blueRredhmygreeno
	
	bluePmygreen2greenTredS: Some Problems
	A Good Recipes for ... Good Patterns
	The main contribution of this (ongoing) work are ...
	
	
	The Typed Syntax
	Untyped blueRredhmygreeno vs. Typed bluePmygreen2greenTredS
	
	Reduction@glance
	The Small-step Reduction Semantics
	
	Galleria I: The Pattern Abstraction A B
	Galleria II: The Matching Constraint [A B] C
	
	Matching Systems
	The Algorithm Alg
	Termination of Alg
	Less Easy Running
	Two Easy Running
	
	The Type System I
	The Type System first.279II
	Fetch Your System
	
	Example: Simple Type Derivation
	Playing with the blueRredhmygreeno-cube: LF
	Playing with the blueRredhmygreeno-cube: 2
	
	bluePmygreen2greenTredS: Some Results
	Open Tracks
	Challenge ... Extending the Curry-Howard Isomorphism
	Logics and blueRredhmygreeno à la Church
	Curry from Church
	Logics and blueRredhmygreeno à la Curry
	Typed and Untyped Judgments and Derivations
	Thanks for youblue attention ...
	The Uncle Pat and the Lady Match
	Imperative Rewriting Calculus
	
	Multiparadigm
	Main Atout: Pattern Matching.
	blueRredhmygreeno's Goodies
	blackiblueRredhmygreeno vs. Programming
	A ``Fresh'' Approach to Rewriting
	Special Emphasis (blackiblueRredhmygreeno)
	
	
	First step: Functional blackfblueRredhmygreeno
	Second step: Imperative blackiblueRredhmygreeno
	 blackiblueRredhmygreeno in a glance
	Simple, Naïve GC (by Talcott, Mason, Morrissett, et al.)
	Let-like and conditionals (in a call-by value setting)
	Values and Environments in blackfblueRredhmygreeno
	Values and Stores in blackiblueRredhmygreeno
	Natural Semantics for blackfblueRredhmygreeno
	Natural Semantics (NS) in a Nutshell
	Optimistic- vs. Pessimistic-machines
	Just try before I tell you the full story ...
	
	Natural Judgments in blackiblueRredhmygreeno
	
	"322B37F val: Application and Structures
	"322B37F val: Functions, Values, Variables
	"322B37F val: Referencing, Dereferencing, Assignment
	
	"322B37F call: FunOk, FunKO
	"322B37F call: Structure, Algebric, and Wrong
	
	"322B37F match: Variables and Constants
	"322B37F match: Structures and References
	Remark: About Linearity
	The Uncle Pat and the Lady Match Still at Work...
	
	An Imperative Natural Derivation
	Just a Nice LaTeX Exercise
	Aliases
	
	Computing a Negation Normal Form
	Imperative, I
	Imperative-with-Sharing, IS
	Imperative-with-Sharing, IS
	
	Why a type system?
	What's new in this type system
	Type Judgments
	
	A: Pattern Rules
	
	A: Variables, Constants, and Structures
	A: Abstraction and Application
	A: Assign, Referencing, Dereferencing
	
	Typing the Two Imperative Encodings
	
	Properties ("658 = proved by the proof assistant Coq)
	Conclusion
	DIMPRO
	The explicit rewriting calculus
	Lists in the -calculus vs in the -calculus
	Run Time errors in O'Caml
	Errors in the -calculus
	Errors in the -calculus
	How to represent programs
	Explicit constraint handling
	Explicit matching decomposition
	Constraint application
	Syntax of the x-calculus-calculus
	Semantics of the x-calculus-calculus
	Example
	Properties of the x-calculus-calculus
	The xC-calculus
	The xC-calculus
	The xC-calculus
	Graphs in the rewriting calculus
	Graphs in the -calculus
	The syntax of g-calculus
	Some g-terms
	The semantics of g-calculus
	Example - Multiplication
	Example - Non-linearity
	ZOOM on matching theories
	``Untyped'' Matching theories I
	``Untyped'' Matching theories II
	``Untyped'' Matching theories III
	``Untyped'' Matching theories IV
	``Untyped'' Matching theories V
	The Matching Algorithm for T
	ZOOM on objects
	The Lambda Calculus of Objects Obj
	Compiling Obj in -calculus
	ZOOM on Combinatory Reduction Systems
	The Combinatory Reduction Systems
	Translation examples
	ZOOM on bluePmygreen2greenTredS
	Lambda Calculi à la Church and Logics
	The Famous Barendregt's -cube and its 8 logic systems
	From Barendregt's -cube to Pure Type Systems (bluePgreenTredSs)
	More Pragmatically ...
	bluePmygreen2greenTredS: One-step, Many-steps, Congruence
	Abbreviations and Priorities
	... still substitutions
	Termination of Alg
	Functional bluePmygreen2greenTredS
	ZOOM on DIMPRO
	Simple Functional Fixpoint
	Encoding Term Rewrite Systems
	A Nice Circle ... and back

