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Introduction

Welcome to Ubiquitous Computing (aka Pervasive Computing).

• So what is Ubiquitous Computing?
. Immerses computers in a real environment
. Sensors support interact with and control the environment.
. Limited power supply, storage, memory and bandwidth.
. Operate unattended (much like embedded systems).
. Devices are mobile/wireless.
. May reside on a person (wearable computing).
. Have special peripherals.
. Contrast this with virtual reality which immerses humans in a computer generated

arti�cial environment.

• What are the Goals of This Course?
. Prepare researchers
. Learn about this area together
. Try to �nd an opportunity to learn by doing

• Grading - See Syllabus
. Projects (1) - 40
. Exams (2) - 30 %
. Reports (2 oral, 1 written) - 30 %
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Administrative Stu� - Course Materials

Text Books - These are useful for background material

• Security for Ubiquitous Computing by Frank Stajano. John Wiley and Sons, Ltd. Wiley Series
in Communications Networking & Distributed Systems, 2002.
ISBN: 0-470-84493-0.

• Wireless Communications and Networks by William Stalling. Prentice Hall, 2002.
ISBN: 0-13-040864-6.

Course Home Page:

http://www.cs.albany.edu/˜maniatty/teaching/ubicomp/

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 3



Administrative Stu� - Course Policies

We are looking for research topics.

Goal: Reward good students

• So be good!
• Otherwise it is possible to fare poorly.

Class covers key concepts, you'll need to read on your own.

Learn by doing and reading, don't just sit and listen.

Please attend.

• Otherwise you'll miss out
• Your grades may re�ect that.

Number of talks and scope of projects depend on enrollment.

Grading gripes - I regrade the entire item, not just the complaint

• On Exam - hand back exam before leaving class with a note about grading issues
• On Projects / Homeworks - Must be within one week of the return.
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Historical Origins and Trends

Computers are becoming smaller and cheaper over time

• Originally few computers many operators
. Machines Expensive and Large
. People (relatively) cheap

• Trend toward more computers per person
. Users may not be tech savvy
. Even tech savvy users have limited time
. Minimal intervention is required

People don't want to be separated from their data

• But spying on users upsets them
• And can violate laws - security is important
• Mobility and wireless access are critical.
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Tool/Application Interactions

Formalization
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Binding

New
Ideas Target

Architecture
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AlgorithmApplication
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Architecture Features and Trends

Component Properties Trends/Issues
Processor Electronic Moore's Law, Power/Speed Trade o�
Memory Electronic Moore's Law, Power/Speed Trade o�

Persistent Storage Electromechanical MEMS/NVRAM
Networking Electronic Signal Strength, Encoding Security

User Interface Peripherals Electromechanical sensory limitations
Power Supply Chemical Very limiting! Fuel Cells?

Software Embedded Stand Alone, Resource limited
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Observations/My Opinions

Architectural trends seem more clear

Some user motivations/trends observed

• Young kids in the mall deploy new cheap technology
• Mobile devices and Cell Phones beginning to merge

New small machines feel like old version of previous generation

• Small Memory
• Limited Processing
• Limited Connectivity
• Big Di�erence - Limited Power

However, still looking for killer apps.

• Requires identifying a need
• Re�ects what people want to do.
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Background Material

Distributed Systems

• Time/Event ordering
• Synchronization
• Distributed Consensus (Voting)
• Security

. Cryptography

. Byzantine Generals Problem

. Intrusion Detection

Mobile Computing

• Tolerating Disconnection
• Wireless and Ad Hoc Networking
• Power Management
• Security (link layer)

User Interface Design, aka Human Computer Interaction (HCI)

Embedded and Real Time Systems
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Introduction to Fault Tolerance

Failures - Cause a machine to give the wrong result for some inputs

• Persistent or Intermittent
• Node Failure vs. Communication Failure
• Security intrusions can be modeled as failures

A formal model of a distributed system

• Modeled as a graph G = (V, E)

. |V | = N , i.e. there are N nodes.

. |E| ≤ N2−N
2 , where E is the number of communication channels (links).

A fault tolerant system can continue to operate properly in the presence
of a reasonable number of failures.

• Fail Stop - Failed nodes/links shut down
• Byzantine - Failed links/nodes give incorrect values
• Note: undetected faults cannot be tolerated
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Fault Tolerance in Distributed Systems

By de�nition distributed systems don't have a centralized controller

Thus distributed solution methods require reaching consensus (voting)

Distributed systems can be characterized as:.

• Asynchronous - Makes no assumption about timing, no time outs.
• Synchronous - Permits time outs
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Fault Tolerance in Asynchronous Systems

Fisher, et al. proved [3] Cannot be guaranteed even under ideal conditions

• Fail stop model.
• Only one failure in N nodes

Why?

• Remember no timing assumptions allowed in Asynchronous Model
• Hence can't time out
• During a long wait for a message or is the node/link just really slow?
• However, G. Bracha and S. Toueg [1] demonstrated that probabilistic consensus is possible

. the probability of inde�nite delay can be made negligible (have probability 0).

Asynchronous systems are of a more theoretical interest.

• Probabilistic consensus is possible
. the probability of inde�nite delay can be made negligible (have probability 0).

• Adding failure detectors (so that you know if a node or link is dead) can help.
• Relaxing asynchrony (by allowing atomic operations) helps.
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Byzantine Fault Tolerance in Synchronous Systems

Lamport et al. [4] de�ned the Byzantine Generals Problem (BGP) as:

• Consider a city under siege by N divisions of the Byzantine Army
• Each division has a General.

. There is one commanding general.

. The commander has N − 1 lieutenant generals

• Generals communicate by messengers
• Have to agree on a common strategy (or globally fail)
• What if some generals are traitors? Our goals are:

. All loyal generals should agree on the same strategy

. A small number of traitors should not be able to trick the loyal generals into using a
bad strategy.
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BGP Formalized

One possibility the commander is traitor.

This gives rise to Lamport et al's formalization using Interactive Consis-
tency Conditions

• IC1) All loyal lieutenants obey the same order
• IC2) If the commander is loyal, all loyal lieutenants obey the order he sends.
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A question

Consider a case where there is 1 traitor and 3 generals, can we guarantee
a correct outcome?

• (HINT) Lieutenants can relay the commander's order.
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An Answer

Given: 1 traitor and 3 generals.

To Prove: A correct outcome is not guaranteed

The idea: Prove One Lieutenant Gets Con�icting Reports And Doesn't
know what to do

Lieutenant 1 Defects

Retreat
Commander said

(traitor)

Lieutenant 1

(Loyal)

Lieutenant 2

Commander

(Loyal)

AttackAttack

Retreat

Commander Defects

Commander

Lieutenant 1Lieutenant 2

(Loyal) (Loyal)

(traitor)
RetreatAttack

Commander said
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Answer Details

In both cases Loyal Lieutenant 1 receives:

• Attack order directly from Commander
• Retreat order directly from Lieutenant 2

Case 1: Lieutenant 2 defects

• IC2) implies Lieutenant 1 should attack
• Suggests a (faulty) rule: Listen only to the commander

Case 2: Commander defects

• If Lieutenant 1 obeys commander he must attack
• If Lieutenant 2 obeys commander he must retreat
• But this violates IC1)

. Thus, lieutenants need to listen to each other to detect a traitorous commander
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Generalizing the Result

What if we have N > 3 generals and m < N traitors?

To distinguish this from the 3 general Byzantine General Problem we call
these generals Albanian Generals.

In general if N < 3m + 1, there is no solution

• Suppose N = 3m

• Without loss of generality we can model this by partitioning the Albanians
• 2 Byzantine Lieutenants, each representing m Albanian Lieutenants
• 1 Byzantine Commander, representing 1 Albanian commander and m − 1 Albanian

Lieutenants
• But this representation is exactly the unsolvable Byzantine Generals Problem
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Approach to Con�icting Messages

So what should a node do if it gets con�icting messages?

Explode in a �ery cataclysm of doom? No...

Each node picks a �representative� message value using a voting method.

• Majority
• Median value
• Mean value (for continuous values)

Picking a voting method depends on application and message type
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Approximate Agreement in the BGP 1 of 2

If we have N generals and m ≥ N
3 approximate agreement is impossible.

Consider a scenario with 3 Generals and one traitor where they

• Have synchronized clocks
• All loyal lieutenants must attack within 10 minutes of each other

This gives rise to modi�ed versions of IC1) and IC2)

• IC1)′ All loyal lieutenants must attack within 10 minutes of each other
• IC2)′ If the commander is loyal, all loyal lieutenants must attack within 10 minutes of the time

given in his order.
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Approximate Agreement in the BGP 2 of 2

The commander sends a message with a time

• 1:00 means attack at 1:00
• 2:00 means retreat

Lamport Suggests Each Lieutenant does the following:

• Step 1) If the commander's message is
. (a) 1:10 or earlier, attack
. (b) 1:50 or later, retreat
. (c) Otherwise do step 2

• Step 2) Ask other lieutenant what they decided
. If the other lieutenant decided, do the same action
. Otherwise retreat

It can be shown that this approach fails if the commander is a traitor.
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Oral Message BGP

Oral messages use a reliable channel where:

• Every sent message is correctly delivered
• The receiver of a message knows who sent it
• The absence of a message can be detected

Lamport et al. developed an Oral Message Algorithm OM(m), where
• There are N generals with

. 1 Commander

. N − 1 Lieutenants

. m of the generals are loyal

• Each pair of generals has a channel for oral messages
• Can't have too many traitors, requires N ≥ 3m + 1

• Use a function to obtain representative value majority(v1, v2, . . . , vN−1)

. Can use simple majority, median for ordered sets or average for continuous values
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The Oral Message tolerating m traitors,OM(m) algorithm

1. OM(0) (m = 0 case, i.e. there are no traitors)

(a) The commander sends his value to every lieutenant
(b) Each lieutenant receiving a command uses the value received, if a message does

not arrive, uses the value RETREAT

2. OM(m) (m > 0 case, i.e. there are m traitors`)

(a) The commander sends his value to every lieutenant
(b) For each Lieutenant i, 1 ≤ i ≤ N let vi be the value i receives from the com-

mander or RETREAT if no such value was received.
In the next stage, Lieutenant i will act as a commander of the remaining n − 2
Lieutenants in OM(m− 1) with order vi.

(c) For each node i, let j 6= i, 1 ≤ j ≤ N , be some other Lieutenant. Let vj be the
value j sends to i in Step 2b (using OM(m− 1)) or else retreat if he receives no
such value.
Lieutenant i uses majority(v1, v2, . . . , vN−1).
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Examples of OM(1) for N = 4

Lieutenant 2

(traitor)

Commander

Lieutenant 1 Lieutenant 3

(loyal)

Lieutenant 2

(loyal)

Commander

Lieutenant 1 Lieutenant 3

(traitor)

v vv

xv

(loyal)

(loyal)

(loyal)

(loyal)

yx z

Commander Defects

x z

yy

x

z

Lieutenant 3 Defects

v v

v

x
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Remarks on Correctness of OM(m)

Theorem: Algorithm OM(m) satis�es IC1 and IC2 if there are no more
than m traitors and at least 3m generals (i.e. n > 3m).

Proof by induction on m.

• Base Case: m = 0 means there are no traitors, so OM(0) satis�es IC1 and IC2.
• Induction Step: Show that theorem holds for OM(m) case if the theorem holds for OM(m−

1) where m > 0.
• Case 1: The Commander is loyal.

. Lemma: For any m and k, OM(0) satis�es IC2 if there are at least 2k + m generals
and no more than k traitors.

. If k = m then OM(m) satis�es IC2 and since the commander is loyal IC1 holds.

• Case 2: The commander is a traitor.
. Then there are at most m − 1 traitorous lieutenants and 1 traitorous commander.
. From our hypothesis are n−1 > 3m−1 lieutenants, and m−1 traitors. OM(m−1)

on the lieutenants obeys our constraint since n − 1 > 3m − 1 > 3(m − 1).
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Some Cost Measures in Distributed/Parallel Algorithms

Common measures of parallel algorithm resource e�ciency are:

• Run Time - when the last processor �nishes
• Number of rounds (for algorithms that synchronize on iterations).
• Number of messages transmitted
• Operations performed by a single processor
• Work = Operations per processor× num processors.
• Memory needed (per node or global memory required).
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Remarks on Cost/Complexity of OM(m)

• Time: The algorithm runs for m + 1 rounds.

• Work per round is proportional to the number of messages

• Message Count: O(N (m+1)).
. Round 1: Commander sends N − 1 messages
. Round 2: N − 1 lieutenants act as commanders for N − 2 of their peers for a total

of (N − 1)(N − 2) messages.
. By induction Round k, 1 ≤ k ≤ m + 1 requires

k∏
i=1

(N − i) = (N − 1)(N − 2) . . . (N − k) (1)

• So the total number of messages is:

Number of Messages =

m+1∑
i=1

i∏
j=1

(N − j) = O(N
(m+1)

) (2)
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Concluding Remarks and Alternatives

Number of rounds is inherently m + 1 for this class of problem

• Even if the faults happen to be fail stop instead of Byzantine

Message count is large, since generals must check for altered messages

• If faults are fail stop, the message count can be reduced to (I think to O(mN2) but I'm not
sure).

• Lamport et al [4] developed a written message protocol (assumes Byzantine Faults)
. The messages exchanged have tamper resistant signatures appended

. Forging signatures is hard (correctly guessing has negligible probability)

. Readers of messages can use the signature to detect tampering.

. Increases message size
. For N generals tolerates up to m < N

3 traitors.
. Still takes O(m + 1) rounds and O(N (m+1)) total messages.
. Can append signatures to message
. In 3 general case, can now detect 1 traitor.
. Dolev and Strong [2] were able to reduce the number of messages to O(N2) messages

by avoiding retransmitting messages that were already sent.
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Signed Messages Allow Byzantine Agreement with N = 3m Generals

Lieutenant 2 Defects

(traitor)

Lieutenant 2

(Loyal)

Lieutenant 1

Commander

(Loyal)

Attack:0Attack:0

Commander Defects

Commander

Lieutenant 2Lieutenant 1

(Loyal) (Loyal)

(traitor)
RetreatAttack

0

2

0

211 Attack:0:1

Cannot Forge
Retreat:0:2 Retreat:0:2

Attack:0:1
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Review and Conclusions

Administrative Details Covered

Brief intro to Ubiquitous Computing (more coverage next lecture)

Review some Background material

• Lampson's paper on your own.
• Byzantine Generals Problem/Distributed Fault Tolerance

Conclusions on Fault Tolerance

• Byzantine Generals Problem is a very strong result
• However, reaching consensus is expensive
• Especially for large systems
• Or systems with expensive data communication
• But some applications need it . . . .
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