
Welcome to Ubiquitous Computing, CSI 660

Prof. William A. Maniatty
Lecture 1

maniatty@cs.albany.edu

http://www.cs.albany.edu/˜maniatty/teaching/ubicomp/

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 1

Introduction

Welcome to Ubiquitous Computing (aka Pervasive Computing).

• So what is Ubiquitous Computing?
. Immerses computers in a real environment
. Sensors support interact with and control the environment.
. Limited power supply, storage, memory and bandwidth.
. Operate unattended (much like embedded systems).
. Devices are mobile/wireless.
. May reside on a person (wearable computing).
. Have special peripherals.
. Contrast this with virtual reality which immerses humans in a computer generated

arti�cial environment.

• What are the Goals of This Course?
. Prepare researchers
. Learn about this area together
. Try to �nd an opportunity to learn by doing

• Grading - See Syllabus
. Projects (1) - 40
. Exams (2) - 30 %
. Reports (2 oral, 1 written) - 30 %

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 2

Administrative Stu� - Course Materials

Text Books - These are useful for background material

• Security for Ubiquitous Computing by Frank Stajano. John Wiley and Sons, Ltd. Wiley Series
in Communications Networking & Distributed Systems, 2002.
ISBN: 0-470-84493-0.

• Wireless Communications and Networks by William Stalling. Prentice Hall, 2002.
ISBN: 0-13-040864-6.

Course Home Page:

http://www.cs.albany.edu/˜maniatty/teaching/ubicomp/

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 3

Administrative Stu� - Course Policies

We are looking for research topics.

Goal: Reward good students

• So be good!
• Otherwise it is possible to fare poorly.

Class covers key concepts, you'll need to read on your own.

Learn by doing and reading, don't just sit and listen.

Please attend.

• Otherwise you'll miss out
• Your grades may re�ect that.

Number of talks and scope of projects depend on enrollment.

Grading gripes - I regrade the entire item, not just the complaint

• On Exam - hand back exam before leaving class with a note about grading issues
• On Projects / Homeworks - Must be within one week of the return.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 4

Historical Origins and Trends

Computers are becoming smaller and cheaper over time

• Originally few computers many operators
. Machines Expensive and Large
. People (relatively) cheap

• Trend toward more computers per person
. Users may not be tech savvy
. Even tech savvy users have limited time
. Minimal intervention is required

People don't want to be separated from their data

• But spying on users upsets them
• And can violate laws - security is important
• Mobility and wireless access are critical.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 5

Tool/Application Interactions

Formalization

Programming

Binding

New
Ideas Target

Architecture
Mapping

O/S

Physics
Device

Architecture

AlgorithmApplication

Compiler

Tools

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 6

Architecture Features and Trends

Component Properties Trends/Issues
Processor Electronic Moore's Law, Power/Speed Trade o�
Memory Electronic Moore's Law, Power/Speed Trade o�

Persistent Storage Electromechanical MEMS/NVRAM
Networking Electronic Signal Strength, Encoding Security

User Interface Peripherals Electromechanical sensory limitations
Power Supply Chemical Very limiting! Fuel Cells?

Software Embedded Stand Alone, Resource limited

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 7

Observations/My Opinions

Architectural trends seem more clear

Some user motivations/trends observed

• Young kids in the mall deploy new cheap technology
• Mobile devices and Cell Phones beginning to merge

New small machines feel like old version of previous generation

• Small Memory
• Limited Processing
• Limited Connectivity
• Big Di�erence - Limited Power

However, still looking for killer apps.

• Requires identifying a need
• Re�ects what people want to do.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 8

Background Material

Distributed Systems

• Time/Event ordering
• Synchronization
• Distributed Consensus (Voting)
• Security

. Cryptography

. Byzantine Generals Problem

. Intrusion Detection

Mobile Computing

• Tolerating Disconnection
• Wireless and Ad Hoc Networking
• Power Management
• Security (link layer)

User Interface Design, aka Human Computer Interaction (HCI)

Embedded and Real Time Systems

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 9

Introduction to Fault Tolerance

Failures - Cause a machine to give the wrong result for some inputs

• Persistent or Intermittent
• Node Failure vs. Communication Failure
• Security intrusions can be modeled as failures

A formal model of a distributed system

• Modeled as a graph G = (V, E)

. |V | = N , i.e. there are N nodes.

. |E| ≤ N2−N
2 , where E is the number of communication channels (links).

A fault tolerant system can continue to operate properly in the presence
of a reasonable number of failures.

• Fail Stop - Failed nodes/links shut down
• Byzantine - Failed links/nodes give incorrect values
• Note: undetected faults cannot be tolerated

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 10

Fault Tolerance in Distributed Systems

By de�nition distributed systems don't have a centralized controller

Thus distributed solution methods require reaching consensus (voting)

Distributed systems can be characterized as:.

• Asynchronous - Makes no assumption about timing, no time outs.
• Synchronous - Permits time outs

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 11

Fault Tolerance in Asynchronous Systems

Fisher, et al. proved [3] Cannot be guaranteed even under ideal conditions

• Fail stop model.
• Only one failure in N nodes

Why?

• Remember no timing assumptions allowed in Asynchronous Model
• Hence can't time out
• During a long wait for a message or is the node/link just really slow?
• However, G. Bracha and S. Toueg [1] demonstrated that probabilistic consensus is possible

. the probability of inde�nite delay can be made negligible (have probability 0).

Asynchronous systems are of a more theoretical interest.

• Probabilistic consensus is possible
. the probability of inde�nite delay can be made negligible (have probability 0).

• Adding failure detectors (so that you know if a node or link is dead) can help.
• Relaxing asynchrony (by allowing atomic operations) helps.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 12

Byzantine Fault Tolerance in Synchronous Systems

Lamport et al. [4] de�ned the Byzantine Generals Problem (BGP) as:

• Consider a city under siege by N divisions of the Byzantine Army
• Each division has a General.

. There is one commanding general.

. The commander has N − 1 lieutenant generals

• Generals communicate by messengers
• Have to agree on a common strategy (or globally fail)
• What if some generals are traitors? Our goals are:

. All loyal generals should agree on the same strategy

. A small number of traitors should not be able to trick the loyal generals into using a
bad strategy.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 13

BGP Formalized

One possibility the commander is traitor.

This gives rise to Lamport et al's formalization using Interactive Consis-
tency Conditions

• IC1) All loyal lieutenants obey the same order
• IC2) If the commander is loyal, all loyal lieutenants obey the order he sends.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 14

A question

Consider a case where there is 1 traitor and 3 generals, can we guarantee
a correct outcome?

• (HINT) Lieutenants can relay the commander's order.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 15

An Answer

Given: 1 traitor and 3 generals.

To Prove: A correct outcome is not guaranteed

The idea: Prove One Lieutenant Gets Con�icting Reports And Doesn't
know what to do

Lieutenant 1 Defects

Retreat
Commander said

(traitor)

Lieutenant 1

(Loyal)

Lieutenant 2

Commander

(Loyal)

AttackAttack

Retreat

Commander Defects

Commander

Lieutenant 1Lieutenant 2

(Loyal) (Loyal)

(traitor)
RetreatAttack

Commander said

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 16

Answer Details

In both cases Loyal Lieutenant 1 receives:

• Attack order directly from Commander
• Retreat order directly from Lieutenant 2

Case 1: Lieutenant 2 defects

• IC2) implies Lieutenant 1 should attack
• Suggests a (faulty) rule: Listen only to the commander

Case 2: Commander defects

• If Lieutenant 1 obeys commander he must attack
• If Lieutenant 2 obeys commander he must retreat
• But this violates IC1)

. Thus, lieutenants need to listen to each other to detect a traitorous commander

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 17

Generalizing the Result

What if we have N > 3 generals and m < N traitors?

To distinguish this from the 3 general Byzantine General Problem we call
these generals Albanian Generals.

In general if N < 3m + 1, there is no solution

• Suppose N = 3m

• Without loss of generality we can model this by partitioning the Albanians
• 2 Byzantine Lieutenants, each representing m Albanian Lieutenants
• 1 Byzantine Commander, representing 1 Albanian commander and m − 1 Albanian

Lieutenants
• But this representation is exactly the unsolvable Byzantine Generals Problem

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 18

Approach to Con�icting Messages

So what should a node do if it gets con�icting messages?

Explode in a �ery cataclysm of doom? No...

Each node picks a �representative� message value using a voting method.

• Majority
• Median value
• Mean value (for continuous values)

Picking a voting method depends on application and message type

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 19

Approximate Agreement in the BGP 1 of 2

If we have N generals and m ≥ N
3 approximate agreement is impossible.

Consider a scenario with 3 Generals and one traitor where they

• Have synchronized clocks
• All loyal lieutenants must attack within 10 minutes of each other

This gives rise to modi�ed versions of IC1) and IC2)

• IC1)′ All loyal lieutenants must attack within 10 minutes of each other
• IC2)′ If the commander is loyal, all loyal lieutenants must attack within 10 minutes of the time

given in his order.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 20

Approximate Agreement in the BGP 2 of 2

The commander sends a message with a time

• 1:00 means attack at 1:00
• 2:00 means retreat

Lamport Suggests Each Lieutenant does the following:

• Step 1) If the commander's message is
. (a) 1:10 or earlier, attack
. (b) 1:50 or later, retreat
. (c) Otherwise do step 2

• Step 2) Ask other lieutenant what they decided
. If the other lieutenant decided, do the same action
. Otherwise retreat

It can be shown that this approach fails if the commander is a traitor.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 21

Oral Message BGP

Oral messages use a reliable channel where:

• Every sent message is correctly delivered
• The receiver of a message knows who sent it
• The absence of a message can be detected

Lamport et al. developed an Oral Message Algorithm OM(m), where
• There are N generals with

. 1 Commander

. N − 1 Lieutenants

. m of the generals are loyal

• Each pair of generals has a channel for oral messages
• Can't have too many traitors, requires N ≥ 3m + 1

• Use a function to obtain representative value majority(v1, v2, . . . , vN−1)

. Can use simple majority, median for ordered sets or average for continuous values

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 22

The Oral Message tolerating m traitors,OM(m) algorithm

1. OM(0) (m = 0 case, i.e. there are no traitors)

(a) The commander sends his value to every lieutenant
(b) Each lieutenant receiving a command uses the value received, if a message does

not arrive, uses the value RETREAT

2. OM(m) (m > 0 case, i.e. there are m traitors`)

(a) The commander sends his value to every lieutenant
(b) For each Lieutenant i, 1 ≤ i ≤ N let vi be the value i receives from the com-

mander or RETREAT if no such value was received.
In the next stage, Lieutenant i will act as a commander of the remaining n − 2
Lieutenants in OM(m− 1) with order vi.

(c) For each node i, let j 6= i, 1 ≤ j ≤ N , be some other Lieutenant. Let vj be the
value j sends to i in Step 2b (using OM(m− 1)) or else retreat if he receives no
such value.
Lieutenant i uses majority(v1, v2, . . . , vN−1).

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 23

Examples of OM(1) for N = 4

Lieutenant 2

(traitor)

Commander

Lieutenant 1 Lieutenant 3

(loyal)

Lieutenant 2

(loyal)

Commander

Lieutenant 1 Lieutenant 3

(traitor)

v vv

xv

(loyal)

(loyal)

(loyal)

(loyal)

yx z

Commander Defects

x z

yy

x

z

Lieutenant 3 Defects

v v

v

x

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 24

Remarks on Correctness of OM(m)

Theorem: Algorithm OM(m) satis�es IC1 and IC2 if there are no more
than m traitors and at least 3m generals (i.e. n > 3m).

Proof by induction on m.

• Base Case: m = 0 means there are no traitors, so OM(0) satis�es IC1 and IC2.
• Induction Step: Show that theorem holds for OM(m) case if the theorem holds for OM(m−

1) where m > 0.
• Case 1: The Commander is loyal.

. Lemma: For any m and k, OM(0) satis�es IC2 if there are at least 2k + m generals
and no more than k traitors.

. If k = m then OM(m) satis�es IC2 and since the commander is loyal IC1 holds.

• Case 2: The commander is a traitor.
. Then there are at most m − 1 traitorous lieutenants and 1 traitorous commander.
. From our hypothesis are n−1 > 3m−1 lieutenants, and m−1 traitors. OM(m−1)

on the lieutenants obeys our constraint since n − 1 > 3m − 1 > 3(m − 1).

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 25

Some Cost Measures in Distributed/Parallel Algorithms

Common measures of parallel algorithm resource e�ciency are:

• Run Time - when the last processor �nishes
• Number of rounds (for algorithms that synchronize on iterations).
• Number of messages transmitted
• Operations performed by a single processor
• Work = Operations per processor× num processors.
• Memory needed (per node or global memory required).

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 26

Remarks on Cost/Complexity of OM(m)

• Time: The algorithm runs for m + 1 rounds.

• Work per round is proportional to the number of messages

• Message Count: O(N (m+1)).
. Round 1: Commander sends N − 1 messages
. Round 2: N − 1 lieutenants act as commanders for N − 2 of their peers for a total

of (N − 1)(N − 2) messages.
. By induction Round k, 1 ≤ k ≤ m + 1 requires

k∏
i=1

(N − i) = (N − 1)(N − 2) . . . (N − k) (1)

• So the total number of messages is:

Number of Messages =

m+1∑
i=1

i∏
j=1

(N − j) = O(N
(m+1)

) (2)

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 27

Concluding Remarks and Alternatives

Number of rounds is inherently m + 1 for this class of problem

• Even if the faults happen to be fail stop instead of Byzantine

Message count is large, since generals must check for altered messages

• If faults are fail stop, the message count can be reduced to (I think to O(mN2) but I'm not
sure).

• Lamport et al [4] developed a written message protocol (assumes Byzantine Faults)
. The messages exchanged have tamper resistant signatures appended

. Forging signatures is hard (correctly guessing has negligible probability)

. Readers of messages can use the signature to detect tampering.

. Increases message size
. For N generals tolerates up to m < N

3 traitors.
. Still takes O(m + 1) rounds and O(N (m+1)) total messages.
. Can append signatures to message
. In 3 general case, can now detect 1 traitor.
. Dolev and Strong [2] were able to reduce the number of messages to O(N2) messages

by avoiding retransmitting messages that were already sent.

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 28

Signed Messages Allow Byzantine Agreement with N = 3m Generals

Lieutenant 2 Defects

(traitor)

Lieutenant 2

(Loyal)

Lieutenant 1

Commander

(Loyal)

Attack:0Attack:0

Commander Defects

Commander

Lieutenant 2Lieutenant 1

(Loyal) (Loyal)

(traitor)
RetreatAttack

0

2

0

211 Attack:0:1

Cannot Forge
Retreat:0:2 Retreat:0:2

Attack:0:1

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 29

Review and Conclusions

Administrative Details Covered

Brief intro to Ubiquitous Computing (more coverage next lecture)

Review some Background material

• Lampson's paper on your own.
• Byzantine Generals Problem/Distributed Fault Tolerance

Conclusions on Fault Tolerance

• Byzantine Generals Problem is a very strong result
• However, reaching consensus is expensive
• Especially for large systems
• Or systems with expensive data communication
• But some applications need it

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 30

Bibliiography

References

[1] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. J.
ACM, pages 824�840, October 1985.

[2] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12:656�666, 1983.

[3] M. J. Fisher, N. A. Lynch, and M. S Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374�382, April 1985.

[4] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, 4(3):382�401,
July 1982. Republished in Advances in Ultra-Dependable Distributed Systems,
1995, N. Suri, C. J. Walter, and M. M. Hugue (Eds.).

CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 31

