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ABSTRACT

Termination of a string rewriting system can be characterized by termination on suit-
able recursively defined languages. This kind of termination criteria has been criticized
for its lack of automation. In an earlier paper we have shown how to construct an au-
tomated termination criterion if the recursion is aligned with the rewrite relation. We
have demonstrated the technique with Dershowitz’s forward closure criterion. In this
paper we show that a different approach is suitable when the recursion is aligned with
the inverse of the rewrite relation. We apply this idea to Kurth’s ancestor graphs
and obtain ancestor match-bounded string rewriting systems. Termination is shown
to be decidable for this class. The resulting method improves upon those based on
match-boundedness or inverse match-boundedness.

1 INTRODUCTION

Automated termination criteria are vital for the processing, by machine, of string rewriting
systems or similar formalisms. The limitations of the existing automated criteria show up
clearly by their inability to prove, or disprove, termination of certain small string rewriting
systems like Zantema’s System {aabb — bbbaaa}.

There are strong termination criteria which are not automated. Some of them character-
ize termination through termination on a suitable recursively defined subset of the set of all
strings. For instance, Dershowitz [3] shows that termination is equivalent to termination on
the set of right hand sides of forward closures. Kurth [11] shows that termination is equiva-
lent to the absence of infinite paths in the ancestor graph. Usually the constructed subset is
infinite, so the construction cannot be automated directly. In order to enable automation,
we seek circumstances under which these infinite sets become regular languages, as for the
class of regular languages many useful properties are decidable.

A string rewriting system R is called deleting, if for each letter that occurs in the right
hand side of a rule, there is a greater letter in the corresponding left hand side modulo some
partial order on the underlying alphabet. For a deleting system R and a regular language
L, the set R*(L) of descendants of L modulo R is effectively regular [10]. One can go a step
further by annotating each letter by a natural number that records its “recycling” history.
If this number is bounded for all derivations starting from strings in L annotated with zeros,
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we say that the system is match-bounded for L. The annotated system of a match-bounded
system is deleting; so match-bounded systems also preserve regularity.

We have shown in a previous paper [7] that REC-match-boundedness, which is essentially
the same as match-boundedness for the set of right hand sides of forward closures, is an
automated criterion for termination. In the present paper we show that a different approach
is capable to turn Kurth’s ancestor graph criterion into an automated criterion.

The basic difference between criteria like Dershowitz’s and Kurth’s is the direction of
recursion. Right hand sides of forward closures are aligned with the rewrite relation: the
more complex ones are essentially descendants of the simpler ones. In contrast, the nodes of
ancestor graphs are aligned with the inverse of the rewrite relation: the more complex ones
are essentially ancestors of the simpler ones.

It seems appropriate to use inverse match-boundedness for the task, a property that we
introduced as a (non-)termination criterion in [8] for the special case L = ¥*. It turns out
that the main formal language theoretic result presented there is not general enough for our
present purpose. We show how it has to be extended so as to serve as a basis for automating
ancestor-graph like criteria.

The paper is organized as follows. Section 3 and Section 4 contain a summary of defini-
tions and basic results on deleting and match-bounded rewriting systems. In Section 5 we
develop the formal language theoretic ingredients of our method. Kurth’s ancestor graphs
are defined in Section 6, and in Section 7 we describe how they can be characterized through
inverse rewriting relations, leading to our main result. Finally, we present a few examples
and refer to an implementation of our algorithm.

2 PRELIMINARIES

A string rewriting system over an alphabet X is a relation R C ¥* x ¥* that induces the
rewrite relation — g = {(xly, zry) | z,y € ¥*, (¢,r) € R} on ¥*. Unless indicated otherwise,
all rewriting systems are finite. Pairs (¢, ) from R are frequently referred to as rules ¢ — r,
and by lhs(R) and rhs(R) we denote the sets of left (right, resp.) hand sides of R. The
reflexive and transitive closure of —p is —%, often abbreviated as R*, and —} or R
denotes the transitive closure. An R-derivation is a (finite or infinite) sequence xg, z1, ...
with x; —pg x;41 for all i. We call R terminating on L C ¥* if there is no infinite R-
derivation starting from a string xq € L. We say that R is terminating if R is terminating
on X*, otherwise R is non-terminating. A particular kind of non-termination is caused by
loops, i.e., derivations of the form 2 —7 uzv for strings z, u,v. For surveys on termination
of rewriting we refer to [5, 15]. Further standard notations for strings and string rewriting
can be found, for instance, in [2].

For a relation p C Ax B let p(a) = {b € B | (a,b) € p} fora € A and p(A") = U,cu p(a)
for A" C A. The inverse of p is p~ = {(b,a) | (a,b) € p} C B x A, and we say that p satisfies
the property inverse P if p~ satisfies P. Define Inf(p) = {a € A | p(a) is infinite}. The
relation p is finitely branching if Inf(p) = (). For the case A = B let Im(p) denote the set
of all “immortal” elements, i.e., those a € A that initiate an infinite sequence a = ag, ay, . . .
with (a;, a;41) € p for all i.

For a relation p C ¥* x X* on strings and a set A C X let p|a = pN (A* x A*). Note the
difference between R*|a and (R|a)* for a string rewriting system R. For R = {a — b,b — ¢}
over ¥ = {a,b,c} and A = {a,c}, e.g., we have (a,c) € R*|a, but (a,c) ¢ (R|a)*.



The set of descendants of a language L C >* modulo some string rewriting system R is
R*(L). The system R is said to preserve regularity (context-freeness) if R*(L) is a regular
(context-free) language whenever L is. For standard results on rational transductions we
refer to [1].

A rewriting rule £ — r is context-free if |¢| < 1, and a rewriting system is context-free if
all its rules are. Throughout we use € for the empty string and |x| for the length of a string
x.

A relation s C 3* x I'* is a substitution if s(¢) = {e} and s(zxy) = s(z)s(y) for z,y € ¥,
therefore s is uniquely determined by the languages s(a) for a € 3. For a family of languages
L over I, the substitution s is an L-substitution if s(a) € L for all a € ¥. For instance, if £ is
the family of finite (context-free) languages, then s is a finite (context-free, resp.) substitution.
If € ¢ s(a) for every a € ¥, then s is epsilon-free. Finite substitutions are finitely branching,
and the same holds for the inverses of finite and epsilon-free substitutions.

3 DELETING STRING REWRITING SYSTEMS

Here we recall definitions and results on deleting string rewriting systems [10], a topic that
can be traced back to Hibbard [9]. For detailed proofs and algorithms we refer to [10].

Definition 1. A string rewriting system R over an alphabet X is >-deleting for an irreflexive
partial ordering > on X (a precedence) if € ¢ lhs(R), and if for each rule £ — r in R and for
each letter a in r, there is some letter b in ¢ with b > a. The system R is deleting if it is
>-deleting for some precedence >.

Proposition 1 ([10]). Every deleting string rewriting system is terminating, and has linear
derivational complexity.

This class of string rewriting systems enjoys a strong effective decomposition property.
As an immediate consequence, deleting systems preserve regularity of languages, and inverse
deleting systems preserve context-freeness.

Theorem 1 ([10]). Let R be a deleting string rewriting system over . Then there are an
extended alphabet I' O 3, a finite substitution s C X* x I, and a context-free string rewriting
system C' over I' such that R* = (s o C™")|s.

Corollary 1 ([10]). Every deleting string rewriting system effectively preserves regularity.

Corollary 2 ([9, 10]). Every inverse deleting string rewriting system effectively preserves
context-free languages.

In the present paper, we will need a more specialized version of the above decomposition
theorem.

Corollary 3. Let R be a deleting string rewriting system over ¥ such that € ¢ rhs(R). Then
there are an extended alphabet I" O X, an epsilon-free finite substitution s C ¥* x I'*, and an
epsilon-free context-free substitution ¢ C ¥* x I'* such that

R =so0c.

Note that this implies R™* = R*~ = (soc¢™)” =cos.
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4 MATCH-BOUNDED STRING REWRITING SYSTEMS

Many properties of deleting string rewriting systems carry over to the more general case of
match-bounded systems. In this section, we summarize essential results from [6, 7].

In order to record information about the history of letters during a derivation, we annotate
letters by natural numbers, called match heights. The match heights in a reduct will be A+ 1
if the minimal height in the corresponding redex is h. Formally, for a given alphabet X define
the morphisms lift. : ¥* — (X x N)* for ¢ € N by lift, : a — (a,¢), base : (¥ x N)* — ¥* by
base : (a,c) — a, and height : (¥ x N)* — N* by height : (a,c) — c. For a string rewriting
system R over ¥ with € ¢ lhs(R) define the rewriting system

match(R) = {¢' — lift.(r) | (¢ — r) € R, base({') = ¢,
¢ =1+ min(height(¢"))}

over alphabet ¥ x N. For instance, the system match({ab — bc}) contains the rules agby —
bici, agby — bici, arbg — bicy, a1by — baco, aghs — bicq, ..., writing x. as abbreviation for
(x,c). For non-empty R, the system match(R) is always infinite.

Every match(R)-derivation corresponds to an R-derivation (i.e., for z,y € (X x N)*, if
T —maten(r) ¥ then base(x) —r base(y)) and vice versa (i.e., for v,w € ¥* and z € (X x N)*,
if v —r w and base(x) = wv, then there is y € (X x N)* such that base(y) = w and
T —maten(r) ¥)- In particular,

R* = liftg o match(R)" o base.

Definition 2. A string rewriting system R over X is called match-bounded for L C ¥* by
c € N if € ¢ lhs(R) and max(height(z)) < ¢ for every x € match(R)*(lifto(L)). If we omit L,
then it is understood that L = ¥*.

The number max(height(z)) in Definition 2 (and min(height(¢')) in the definition of
match(R)) denotes the maximum (minimum, resp.) over the corresponding sequences of
heights; we set max(e) = 0, and we leave min(e) undefined as this case is excluded in
the definition of match(R). Obviously, a system that is match-bounded for L is also match-
bounded for any subset of L by the same bound. Further, by the remark before Definition 2, if
R is match-bounded for L then R is match-bounded for R*(L), again by the same bound.

For a match-bounded system R, the infinite system match(R) may be replaced by a
finite restriction. Denote by match.(R) the restriction of match(R) to the alphabet ¥ x
{0,1,...,¢}. Then, if R is match-bounded for L by ¢,

R* N (L x ¥*) = (liftg o match.(R)* o base) N (L x ¥¥).
Lemma 1. For all ¢ € N, the string rewriting system match.(R) is deleting.

Dually every deleting system is match-bounded. This connection with deleting rewriting
makes results from Section 3 applicable. By Proposition 1, match-bounded systems terminate
and have linearly bounded derivation lengths, and Corollary 1 implies that match-bounded

systems effectively preserve regularity; as a consequence, match-boundedness by a given
bound is decidable.



Corollary 4. If R is match-bounded for a reqular language L, then R*(L) is effectively
reqular.

Finally note that if R is inverse match-bounded, then —4 is irreflexive, therefore Im(—g)

and Inf(R*) coincide.
5 RESTRICTED INVERSE MATCH-BOUNDEDNESS

In this section, we generalize our termination criterion [6, 8] from inverse match-bounded
systems (for ¥*) to systems that are inverse match-bounded for a suitable language L.

Consider the set Inf(R* N (X* x R~*(L))), consisting of all strings # € ¥* where infinitely
many strings y € X exist such that x —% y —% 2 for some z € L.! We start by showing
that this set is regular for inverse deleting R and regular L. As we show later, emptiness of
this set characterizes termination of R on R~*(L). The result can be carried over to systems
R that are inverse match-bounded for L.

Lemma 2 ([8]). Let X, I', A be alphabets, let ¢ C ¥* x I'* be a substitution, and let
T C I'™ x A* be a finitely branching rational transduction such that also T~ 1is finitely
branching. Then Inf(c o T) is reqular; and if ¢ is a context-free substitution then effectively
s0.

Lemma 3. For any inverse deleting string rewriting system R with € ¢ lhs(R) and any
reqular language L, both over ¥, the set Inf(R* N (X* x R™*(L))) is effectively regular.

Note that R* N (X* x L) = R* N (L' x L') = (—=pN(X* x L"))* for L' = R™*(L).

Proof. We have R* = co s~ by Corollary 3, where ¢ C ¥* x I'* is a context-free substitution
and s C ¥* x I'* is a finite epsilon-free substitution. Thus R* N (X* x R~*(L)) = co s,
where s’ = s N (R™*(L) x I'*). Both s’ and s~ are finitely branching since both s and s~
have this property. As R~*(L) is regular by Corollary 1, the claim follows by Lemma 2. [

Lemma 4. Let R over ¥ be inverse match-bounded for L C ¥* by ¢, and let S = match.(R™)~.
Then to every infinite derivation xo —gr 1 —g -+ Such that x; € R~*(L) for alli > 0 there
is an infinite derivation x( —g )} —g -+ such that x;, € S™*(lifto(L)) and base(x}) = z; for
all i > 0. Therefore, Inf(R* N (X* x R~*(L))) = base(Inf(S* N ((X x N)* x S7*(liftg(L))))).

Proof. For every finite segment z; —r ;41 —r -+ —r 2j, 0 <7 < j, of the given derivation
and every witnessing derivation z; —%5 y € L for z; € R *(L), we construct (by the
remark before Definition 2) a derivation z] —g 2, —s -+ —g 2] —% liftg(y) such that
base(z}) = xy for i« < k < j. Let the set A;; comprise all strings 2 that can be obtained
this way.

Every set A;; is a subset of base™" (z;)Nheight ™' ({0, . . ., ¢}*) by inverse match-boundedness,
thus finite, and non-empty. We claim that A;; O A;; for all ¢ < j < j'. For, every derivation
zy —% af —7% lifto(y) such that y € L, which witnesses that 27 € A;j, can also be read as
a derivation zj —% zj —7 lifto(y), whence it witnesses that i € A;;. Let A; = (5, Ay,
which is therefore a non-empty set. Let us call v a successor of u if u —g v. By definition,
every u € A;; has a successor v € A;;1 ;. We now show that every u € A; also has a successor

12 may depend on y



v € A;11. There are only finitely many successors of u since —g is finitely branching. By
the pigeonhole principle one of them, say v, is in infinitely many sets A, ;, 7 > ¢. In fact v
is then in all of them, hence v € A;,1. Now we can finish the proof by choosing an arbitrary
xy € Ap, and using the just proven existence of a successor x;,, to every x;. This yields the
wanted infinite derivation. O

Theorem 2. Let the string rewriting system R over ¥ with ¢ ¢ lhs(R) be inverse match-
bounded for the reqular language L C ¥*. Then Inf(R*N(X*x R™*(L))) is effectively reqular.

Proof. Let R be inverse match-bounded for L by ¢. By Lemma 1 the system S = match.(R~)~
is inverse deleting. Therefore Inf(S* N ((X x N)* x S™*(lifto(L)))) is effectively regular by
Lemma 3. By Lemma 4, Inf(R*N(X*x R™*(L))) = base(Inf(S*N((X x N)* x S7*(lifto(L))))),
so Inf(R* N (X* x R~*(L))) is effectively regular. O

We obtain our previous result as the special case L = 3*. Note that ¢ € lhs(R) and
€ ¢ rhs(R) implies Inf(R*) = ¥*.

Corollary 5 ([6, 8]). For an inverse match-bounded string rewriting system R, the set
Inf(R*) is effectively regular.

6 ANCESTOR GRAPHS AND TERMINATION PROOFS

Kurth introduced in his thesis a criterion that characterizes termination by the well-foundedness
of a recursively defined relation on strings. In this section we briefly review this ancestor
graph criterion.

Definition 3 ([11]). For a string rewriting system R over alphabet ¥ we define the ancestor
graph (Vg, ER), where the set of vertices Vg C X* and the set of edges Er C ¥* x X* are
the least sets such that lhs(R) C Vg and, for u,v € X%,

o if v € Vg and u —p v, then u € Vi and (u,v) € Eg (reduction),

e if rov € Vg and (¢ — ryry) € R for strings r1,ro € X7, then fv € Vi and (fv,rv) € Eg
(left extension),

e if ur; € Vg and (¢ — ryry) € R for strings r1,ro € X7, then vf € Vi and (vl,vry) € Eg
(right extension),

o if ro € Vi and (£ — ryrors) € R for strings ry, 19,73 € X7, then (¢,r9) € Eg (left-right
extension).

Remark 1. Observe that ¢ € Vg is equivalent to € € lhs(R). In this case R is trivially
non-terminating, so we can exlude this case without loss of generality.

Remark 2. Kurth’s definition addresses the case of one-rule systems {¢ — r}, and does not
include left-right extension. The latter is needed only in the trivial case where ¢ is a factor
of r. For many-rule systems there is no such trivial case, therefore it is necessary to add
left-right extension.



Theorem 3 ([11, Satz 4.24]). A string rewriting system R is terminating if and only if
both € ¢ 1hs(R) and from every node in Vg the length of directed paths in Er to nodes in
lhs(R) is bounded.

By a Konig’s Lemma argument for the finitely branching relation Er we get:

Corollary 6. A string rewriting system R is terminating if and only if € ¢ lhs(R) and

Remark 3. Kurth stated and proved Theorem 3 for one-rule string rewriting and claimed
that it can be extended to the case of many rules. For a rendering of Kurth’s proof in the
many-rule case see Appendix A.

Ezample 1. The non-terminating system R = {ab — bbaa} has the following ancestor graph,
ct Example 3. It contains a cycle, therefore R is non-terminating by Corollary 6.

ab

N

abbT——— qab

N TN

abbb <« abab —— aaab

SN TN TN

abbbb +— abbab abaab — aaaab
A Y’—_ R 1”—,_ o L T 7

Ezxample 2 ([11]). The system R = {baab — aababa} has the ancestor graph (Vg, Er) with
Vi = ba(ab)™ U b%a?b*(ab)* U bTba*b and
Er = {(b"2a%b, b a?D), (ba(ab)", ba(ab)™),
(b?a®b?(ab)’, ba(ab)™®) | i > 0} U {b%a®b, ba(ab)?},

illustrated in the following figure. It shows termination of R by Corollary 6.

baab

(—

baabab <— bbaab

i 1

bbaabb —— baabTabab bbbTaab
bbaabbab —— baabababab bbbbaab

bbaabbabab — baababAababab bbbb/lgaab



7 ANCESTOR MATCH-BOUNDED SYSTEMS

In this section we derive a new automated criterion for (non-)termination. We do it by
instantiating Theorem 2 with L essentially being the vertex set of Kurth’s ancestor graph.

We obtain Vi by inverse rewriting w.r.t. a rewriting system R, constructed from R, using
markers “(” and “)” for the left and right end of strings respectively. In the following, let
> denote ¥ U {(,)} for alphabets ¥ with (,) ¢ .

Definition 4. For a string rewriting system R over alphabet ¥ with (,) ¢ ¥ define the
system

Ry=RU{l — (ra| ({ = rir2) € R,r1,m2 € X7}
U{€—>7"1> ’ (£—>7”17"2) € R,Tl,rg c EJr}
U{l— (ro) | (¢ = rirars) € Ryry, 19,73 € 87}

over alphabet Y. Let Ry denote (Ry)~.

The relation Er and the rewrite relation induced by R\ correspond to each other as we
elaborate next. Let i : 37 — X be the morphism that deletes the end markers “(” and “)7,
and keeps all other letters.

Lemma 5. Let € ¢ ths(R). Forz € X3 andy € (*-Vg-)*, if v —r, y then x € (*Vg)* and
(h(x), h(y)) € Eg.

Proof. Case analysis on the definition of Rjy. The case x —p y is trivial. If 2 = ufv and
y = u(rzv for some u,v € X and ({,r173) € R then u € (" and v € v')* for some v' € ¥~
From h(y) = ryv’ € Vi we get h(x) = (0" € Vi and (rov', fv') € Eg by left extension. The
case where z = ulv and y = ur)v for some u,v € X and ({,rir2) € R is symmetric by
right extension. This leaves the case where z = wlv and y = u(rs)v for some u,v € ¥ and
(¢,rir9) € R. We get u € (" and v € )*. From h(y) = ry € Vg we get h(z) = £ € Vi and
(re,¢) € Eg by left-right extension. O

Lemma 6. For x € (*X7)* and y' € ¥*, if (h(x),y') € Eg, then there is y € (*-y'-)* such
that © — g, y.

Proof. Case analysis on the definition of the ancestor graph. Let = € w - h(z) - v for some
u € ("and v € ). In each case we have h(z),y € Vg. We get © —p, y and y € ("y'-)* by
defining

e y = uy'v in the reduction case h(z) —g ¥/,

e y = uy')v in the left extension case h(z) = lv, y = ryv,

e y = u(y'v in the right extension case h(x) = lv, y' = vry,

e y = u(y)v in the left-right extension case h(z) = ¢, y' = rs. O
Lemma 7. If € ¢ ths(R), then (*-Vg-)" = R,"((*-1hs(R)-)").



Proof. For “27, we note that lhs(R) C Vg and that (*-Vg-)* is closed under rewriting modulo
R, . For “C7, we prove that x € R,"((*-1hs(R)-)") for all z € V by induction on the recursive
definition of the ancestor graph. O]

Lemma 8. If ¢ ¢ rhs(R), then
Im(Eg) = Im(—pg, N(ZGH x By*((*-1hs(R)-)7))) N Z*

Proof. We show (*-Im(Eg)-)* = Im(—g, N(Z} x (*Vg:)*)).
To show “C”, let xq, ), ... satisfy (7,2, ,) € Eg for all i > 0. By definition of the

ancestor graph we get x} € Vg. Starting from zy = xj, one can construct zo, x1, ... iteratively
by Lemma 5 such that x; € (*z)* and x; —Rr, Tip1 forall i > 0.

To show “27, let xg,z1,... satisfy ;41 € (*Vg-)* and z; —g, @i for all i > 0. By
Lemma 5 then (h(z;), h(ziy1)) € Eg. O

Remark 4. As Example 1 shows, Fr may admit cycles even though the rewrite relation
induced by Ry does not. Hence usually Inf(E}) = Inf(Rj, N (X} x (*-Vg-)*)) N X" fails to
hold.

Definition 5. A string rewriting system R is called ancestor match-bounded if R is inverse
match-bounded for (*-lhs(R)-)*.

Theorem 4. Uniform termination is decidable for ancestor match-bounded string rewriting
systems.

Proof. Let R, be match-bounded for L = (*-Ihs(R)-)*. Match-boundedness implies € ¢
Ihs(R), thus € ¢ rhs(Ry)). And by Remark 1 we may assume € ¢ lhs(R), which is equivalent
to € ¢ 1hS(R<>).

By Corollary 6, the system R is terminating if and only if Im(EgR) = 0. We know
Im(Eg) = Im(p) N X* from Lemma 8 for the relation

p=—nr, N(Zy x By (L))

on Y. Since R, is terminating on L, the relation R&* restricted to R,,*(L) is irreflexive, so
the same holds for Rg; as Ry is finitely branching, we obtain Im(p) = Inf(p*). By Theorem 2,
Inf(p*) is effectively regular; note that p* = Ry N (X7 X R@*(L)) Therefore emptiness of
Im(FER) is decidable. O

Ezample 3. Here we consider a few one-rule string rewriting systems of the form {a™b" —
bPa?}, see [14, 12]. The systems {ab — ba} and {ab — bba} are not ancestor match-
bounded since they are not match-bounded on Vi = a(a + b)*b. In contrast, the systems
R = {ab — b™a™} for m,n > 2 are ancestor match-bounded by 2, for we have in each case

matchs (R )*(lifto((*-Vr-)*)) = (5-L-)§ where
L = aobo + (CLQ -+ al)afbl -+ albf(b(] -+ bl) + (Zﬂf{(ag + bl)(al + b2>a>{bl.

Dropping the annotations yields the node set Vg = ab*a*b. We have Im(E},) = ab*(a +
b)a*b = Vg \ {ab}. None of these systems is inverse match-bounded.
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For string rewriting systems R over ¥ define > = {(z,y) | 3s,t € ¥* : = —pr syt}.
Then we get:

Lemma 9. Let e ¢ ths(R), x € ¥*, y € X, uw e (*, andv €)*. Ifx —h,, Uy then x >% y.

Proof. By induction on the length k of the given derivation. The case k = 0 is trivial, so

let £ > 0 and x —>]12;>1 u'y'v' —p, uyv for some v’ € (*, v' € )",y € ¥*. By induction

hypothesis, z >%"1 ¢/. We get ¢/ — syt and so y' > y by defining
e 5 =¢,t=cif the Ry-rule is from R,
o s=r1,t=cif the Ry-rule £ — (ry stems from the R-rule { — 775,
o s=c¢,t=ryif the Ry-rule £ — ry) stems from the R-rule { — 775,

o s =11, t=r3if the Ry-rule { — (ry) stems from the R-rule £ — r17573. O

Theorem 5. Fvery inverse match-bounded system is ancestor match-bounded by at most the
same bound.

Proof. Let S = match(R™)~. Note that S; = match(R,,)~ where we assume for S the

angular brackets (p and ). We prove that z >% y for all z € (X x N)*, y € (2 x {0})™,
u € (§, and v € )" such that z —>*S<> uyv. For this purpose we use Lemma 9 for the system

S, the alphabet ¥ x N, and the angular brackets (; and ). ]

Ezxample 4. The system {babbab — abbabbba} admits a loop of length 3. It is inverse match-
bounded by 3 and ancestor match-bounded by 2.

The converse is false as the following examples show.

Example 5. The system {aaab — aababaa} admits a loop of length 4. It is not inverse
match-bounded but ancestor match-bounded by 3.

Ezample 6. The system {baba — ababbbba} admits a loop of length 4. It is ancestor match-
bounded by 2 but not inverse match-bounded.

Example 7. The system {babaa — aaababbab} admits a loop of length 4. It is ancestor
match-bounded by 2 but not inverse match-bounded.

Ezample 8. The system {baaa — aaabba} admits a loop of length 8 but no shorter loop [4].
It is ancestor match-bounded by 3 but not inverse match-bounded.

All one-rule, terminating, ancestor match-bounded string rewriting systems that we have
encountered are also inverse match-bounded and RFC-match-bounded. However, the bounds
may differ.

Ezample 9. The system {baababa — aababbaab} is terminating. It is ancestor match-
bounded by 2; inverse match-bounded by 3 but not by 2; and RFC-match-bounded by 3
but not by 2.

The following problems are still open:

Problem 1. Are all terminating, ancestor match-bounded string rewriting systems also inverse
match-bounded and RFC-match-bounded?

Problem 2. Are all non-terminating, ancestor match-bounded string rewriting systems loop-
ing?
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8 CONCLUSION

Kurth’s ancestor graph criterion characterizes termination by termination on a specific re-
cursively defined language. Such termination criteria have been criticized for their lack of
automation. We add automation to this non-automated criterion. In doing so we introduce a
new general technique that allows to lift similar characterizations to automated termination
criteria. The new technique is amenable if the recursion is aligned with the inverse rewrite
relation, like in Kurth’s ancestor graph criterion. We have done a similar construction ear-
lier, where the recursion had to be aligned with the rewrite relation. That construction turns
Dershowitz’s characterization of termination on right hand sides of forward closures into the
RFC-match-boundedness criterion.

The new ancestor match-bound criterion complements three related termination criteria:

e match-boundedness for ¥* [6],
e inverse match-boundedness for ¥* [§],
e RFC-match-boundedness [7].
All four criteria are implemented in Matchbox [13], see
http://theol.informatik.uni-leipzig.de/matchbox/.

The four criteria have in common that they are strong: each applies to string rewriting
systems, like Zantema’s System, that could not be proven (non-)terminating by automated
methods earlier. Each is decidable for a given bound and, where applicable, allows to decide
uniform termination. The match-boundedness criteria entail termination whereas the in-
verse ones also cover some non-terminating systems. This may justify the somewhat greater
effort for their correctness proofs. The criteria for ¥X* have decidable termination and nor-
malization problems, and they entail linear upper bounds on the derivational complexity in
the terminating case. The restricted criteria (RFC-match-boundedness and ancestor match-
boundedness) on the other hand apply to a greater class of systems.

The ancestor match-bound criterion improves upon the inverse match-bound criterion.
It covers more non-terminating systems, and obviously the computation for ancestor match-
bounds is cheaper. Every terminating ancestor match-bounded system we found appears
to be RFC-match-bounded, while the converse is not true. We trace this weakness back to
the presence of both the left-extension and the right-extension branch in the definition of
ancestor graphs. The definition of forward closures has only one such branch. We do not
take the weakness of the ancestor match-bound as a weakness of the underlying technique.
It is conceivable to design restrictions of ancestor graphs that characterize termination for
certain classes of string rewriting systems.
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A KURTH’S PROOF OF THE ANCESTOR GRAPH CRITERION

We render Kurth’s proof of Theorem 3 with small changes to account for many-rule systems
and to improve the presentation.

Let an infinite derivation wg —g w; —pg --- be given. We designate positions in this
derivation by pairs (p, i) where p is a position in w;. Positions (p,?) and (p',i+ 1) are called
residuals of each other if there are x,y € ¥* and (¢{ — r) € R such that w; = zfy and
w;+1 = xry, and either 0 < p’ = p < |z| or both |zf| < p < |zly| and p' = p — |¢| + |r|. Note
that p ¢ {|z|,|z¢|}. The residual relation is extended to an equivalence relation. For every
j and (p, 1), there is at most one residual (p', j) of (p,?).

Definition 6 ([11, Definition 4.25]). The chain graph (V,E) of an infinite derivation
To —p L1 —p --- 1s defined as follows. The node set V' is the set of all residuals of redex
positions of the derivation. The edge set £ = Ey U FE is the least set such that

o if (p/,i — 1) is the residual of (p,i) € V, then ((p/,i — 1), (p,i)) € Eo;

e if (p/,i — 1) is the redex position of the step z;_1 —r x;, and (p,i) € V has no residual
in Ti-1, then ((p/,l - 1)7 (pa Z)) € El-

By definition, at each node we have a copy of the residual redex.

Lemma 10 ([11, Hilfssatz 4.26]). The chain graph of an infinite derivation contains a
path with infinitely many edges in F.

Proof. One observes that the chain graph is a finitely branching forest of finitely many trees.
By the pigeonhole principle, one of the trees must be infinite. By Ko6nig’s Lemma it has
an infinite path. If this path has only finitely many edges in F; then there is an infinite
Ey-path, a contradiction to the definition of V. So it has infinitely many edges in FEj. O

We will call a path in the chain graph a chain path, and a path in the ancestor graph an
ancestor path for short.

Lemma 11 ([11, Hilfssatz 4.27]). Let wy —g wy; —g --- be an infinite derivation. Then
to every chain path that has k + 1 edges in Ey there is an ancestor path of length greater
than, or equal to, k from a factor of wy to a left hand side of R.

Proof. Let (po,0), (p1,1),..., (Pas1,n + 1) denote the starting segment of the given chain
path, where n > k + 1 is chosen such that ((p,,n), (pny1,n + 1)) is the k + 1-th edge in Fj.

We are going to show by induction on n — j that for every 0 < 57 < n there is an ancestor
path from a factor of w; that encompasses the residual redex at (p;,j). The lemma then
follows for j = 0.

The claim holds trivially for j = n, so assume j < n. By induction hypothesis, there is
an ancestor path from a factor w of w;; that encompasses the residual redex at (p;+1,7+1).

Case 1: ((pjaj)v (pj-i-laj + 1)) € Eo.

Case 1.1: The contractum of step w; —r w;4+1 and the factor w neither overlap, nor is
one a factor of the other. Then the factor w stays unchanged by the step w; —g w;41, and
we keep the ancestor path constructed so far.
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Case 1.2: The contractum of step w; — g w;41 and the factor w either overlap, or one is
a factor of the other. This induces a factor w’ € Vg in w; and an edge (w’, w) that we can
add at the front of the ancestor path.

Case 2: ((pj, ), (pj+1,J + 1)) € E;. Then the contractum of step w; —p w;41 and the
factor w either overlap, or one is a factor of the other. This induces a factor w’ € Vz in w;
and an edge (w’,w) that we can add at the front of the ancestor path. ]

The proof of Theorem 3 is now finished as follows: Suppose there is an infinite derivation
wg —pr w1 —p ---. By Lemma 10, there is a chain path that has infinitely many FE\-edges.
So this chain path satisfies the premises of Lemma 11 for every & > 0 whence there is an
infinite forest of ancestor paths starting from factors of wy. Since there are only finitely
many factors in wy, this is a forest of finitely many trees, so one of the trees must be infinite
by the pigeonhole principle. Hence the length of ancestor paths starting from one factor of
wy is unbounded.
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