
<Program Title> 1 



<Program Title> 2 



<Program Title> 3 



<Program Title> 4 



<Program Title> 5 



<Program Title> 6 



<Program Title> 7 



<Program Title> 8 



<Program Title> 9 



<Program Title> 10 



<Program Title> 11 



<Program Title> 12 



<Program Title> 13 



<Program Title> 14 



<Program Title> 15 



<Program Title> 16 



<Program Title> 17 



The broad history of the subject falls into three 20 year periods. 

The term “software” is credited to John W. Tukey a Princeton statistician 

(responsible among other things for several fast fourier analysis algorithms) who 

coined it in 1957 to describe the activity in a statistical analysis of the growth of 

various parts of  the computer industry. 

The pioneer stage sees the development of the ideas, the languages, and systems 

– essentially for operating computers. There were few applications, usually 

bespoke. 

Towards the end of the pioneer stage it became apparent that software 

development was complex costly, and time consuming – and that hardware 

development was happening much faster than software development. This 

problem was termed the “software crisis” and described as a “monster” or 

“werewolf” that needed to be killed, and quickly. 

Solutions to these problems (silver bullets) were sought with which to kill the 

monster and this was, and continues to be, one of the key preoccupations of 

research in the subject. 

However, in 1985 a paper was published that suggested that there were no silver 

bullets; with that the subject moved into the current phase – the “no software 

bullets” stage ….  

Which is where we are today.  

 

<Program Title> 18 



<Program Title> 19 



<Program Title> 20 



 

 

COMP319 1 



What is the essence of software engineering? 

Sommerville (“Software Engineering”, 7th ed., 2004, Pearson Education Ltd) 

summarises on page 2 what the essential software processes are. He notes in 

particular that product and people are involved and that the product is not just 

“ware”, but must include people and organisation in the “socio-technical” system 

that is generated. 

In this module we are not going to look at this in any details … you should have 

covered it in earlier modules.  If you have not then at least read the book, or read 

it again. 

In this course we will look at research into these processes as well as the process 

as a whole, “the methods” of software engineering. 

These methods while in practice no more than “rules of thumb” do seem to form 

the “holy grail” of software engineering, although what they do is to wrap up the 

software processes above into one named (and sold) process. 

Examples of such software engineering methods are: Structured Analysis 

(DeMarco, 1978); JSD (Jackson, 1983); OO methods (Booch, 1994; Rumbaugh 

et al, 1991).   

These have been integrated together in the Millennium development “UML” 

(Booch, 1999; Rumbaugh et al, 1999, etc) which we will look at more critically, 

later. 

 

COMP319 2 



COMP319 3 



The complexity is of two kinds and arises because of the fundamental difficulty 

associated with “ … the fashioning … 

The conceptual structure is the first goal of software engineering. 

It is important to be clear what is meant. 

The conceptual structure captures the essence of the software and is associated 

with all software products.  

When the conceptual structure is implemented accidental tasks arise that must be 

solved e.g. coding, bugs, data generation, etc.  All these are additional complexity 

to the complexity of the conceptual structure.  They are always going to be 

present and in this sense are unavoidable, and the aim will be to try and predict 

them and to minimise their impact. 

Both activities are complex and because of that they are hard. 

COMP319 4 



The crisis comes in getting to a product. 

As Brooks put it getting the conceptual structure and then getting it as a product 

has “…become a monster … 

The software engineering monster (colourfully here a werewolf) is thus software 

productivity. 

The werewolf exists because software engineering is complex and tackling the 

complexity is hard.  

But what exactly makes it hard … 

 

COMP319 5 



COMP319 6 



Thus we have a hard task that is inherently difficult to solve – what are the 

difficulties? 

Brooks in NSB suggests 4 essential difficulties. 

It is complex because there are more parts involved than any single human can 

handle without resorting to memory aides and simplifications.  This is loosely 

measured in terms of “elements” although we could substitute “module” or 

“object” without losing the general idea. 

The complexity is inherent in that a conceptual structure is required which is far 

more complex than any other structure that man regularly constructs. Brooks 

compares it to constructing a building or a bridge where spatial issues help keep 

the level of complexity under control.  In contrast in software engineering there is 

no spatial geometry that we can rely on. 

The second difficulty is associated with the number of interfaces and standards 

which the software must comply with. This conformity requirement is serious 

problem that has to be solved. Every interface must be defined and agreed 

between those on either side, and all agreements must be documented. Standards 

are required because the software is part of an environment defined by others in 

which it must operate.  These external standards spawn internal ones – which also 

need to be agreed and documented.  

 

COMP319 7 



COMP319 8 



It is worth noting that hardware seems to manage improved performance year on 

year where software does not. This is due to a number of reasons: 

A CPU is designed once and then many copies of the same chip are fabricated, 

this allows the chip designers to throw a lot of resources at that 1 design. Once 

the design is confirmed as working it is not changed, this means that changes and 

bugs cannot creep in (unlike software that is expected to change throughout its 

lifetime).  

The other reason that hardware can achieve its improved performance easier than 

software can, if that performance can often be improved without increasing the 

complexity of the design, for example increasing the clock rate or using multiple 

processing units are relatively simple approaches to increasing the throughput. 

COMP319 9 



Brooks noted in 1986 that what had been successful up to then could be 

summarised in terms of 3 significant developments. The most important was the 

development of high level languages. Brooks argued that the improvement in  

HLL was responsible for a five-fold increase in productivity over the use of 

assembly level languages.  It did this by reducing the risk of including accidental 

complexity. The program consists of conceptual constructs operations, data-types, 

sequences, and communications rather than machine constructs such as bits, 

registers, conditions, branches, channels, disks, etc.  Eliminating this accidental 

complexity frees the programmer to solve the conceptual issues. He notes that by 

1986 however that there was the risk that languages could not improve further 

because the sophistication they introduced exceeded what was useful or could be 

absorbed by the programmer. Interactive development of programs is credited 

with a two to four-fold increase in productivity. The reason was not necessarily 

because more code could be written but because simple syntax errors could be 

easily spotted and immediacy means that the minutiae of a program could be held 

in human memory long enough to be usefully employed in spotting semantic and 

logic errors. As system response times fell below about 100 milliseconds Brooks 

noted that further benefit from this aspect could not be expected. Finally, 

integrated programming environments such as Unix and Interlisp had improved 

productivity by a factor of about two to four. This was because “… they attack 

the accidental difficulties of using programs together, by providing integrated 

libraries, unified file formats, pipes, filters, etc.” [MMM p 187]  The 

development of the programmer workbench approach follows naturally where 

new tools can be easily incorporated and made available to everyone  

COMP319 10 



participating. In total these methods offer an order of magnitude improvement in 

productivity – however, in the same period hardware speed and storage efficiency 

increased by several orders of magnitude  

COMP319 10 



In 1986 these were the rules of thumb for effective software engineering. While I 

go through them think if any of them have changed or are now obsolete. 

Simply stated the first is to avoid re-inventing the wheel. 

Software requirements are best established by rapidly building prototypes that 

allowed customers and those involved in the development process (mainly 

programmers) to see what sort of interfaces and functions are required. 

Grow software by adding more and more functions as they run, are used, and get 

tested.(see next slide) 

Finally and most importantly identify the most productive conceptual designers, 

pay them and groom them to do their best 

How have things changed since 1986 … ?  We will look at this later in this 

module. 

COMP319 11 



Basic idea is that you rapidly prototype the main interaction loop. 

To this you add functions (called subroutines by Brooks, but could also be 

modules and other similar terms) and change the interaction main loop as 

required. 

While not finished 

   funtion1 

   function2 

   function3 

   . 

   . 

   functionN 

End while loop 

 

COMP319 12 



Brooks identified the problem (werewolf/software productivity) and then looked 

at the potential solutions (silver bullets) that were around in 1986. 

HLLs like Ada add nothing more to the HLLs that already exists. 

OO held the most promise in 1986.  However, most of the then existing OO 

languages added only one  feature (abstract data type as classes with methods) 

and while this did reduce some accidental complexity no order of magnitude gain 

in productivity could be seen by that addition. 

(The most popular current OO language Java certainly does nothing more in 

2004!) 

In 1986 it was thought that order of magnitude productivity gains would come 

from AI.  However, AI apart from Expert Systems, have looked at systems such 

as human speech and image recognition and tried to emulate them.  However, it 

is hard to see how the lessons learnt in either of these could improve software 

engineering. 

 

COMP319 13 



“An expert system is a program containing a generalised inference engine and a rule base. It is designed 

to take input data and assumptions and to explore the logical consequences through the inferences 

derivable from the rule base, yielding conclusions and advice, and offering to explain its results by 

retracing its reasoning for the user.  The inference engine typically can deal with fuzzy or probabilistic 

data and rules in addition to purely deterministic logic” … Brooks MMM, 1986. 

The inference engine is a general and highly advanced tool that can be carried unchanged from domain 

to domain. The real power of Expert Systems are captured in their rule bases. These in software 

engineering capture interface rules, test strategies, typical bugs, optimisation, etc. Such expert systems 

reduce the labour in producing implementations and beefs up the productivity of inexperienced 

programmers by capturing the best practice of experts – however acquiring this knowledge from the 

experts and analysing why they do what they do is hard, and from the outset is doomed only to repeat 

what that expert can expect to do quickly.  Brooks thought it unlikely that order of magnitude gains in 

software productivity could be obtained. 

“Automatic” programming is the generation of a program from a statement of the problem specification. 

In 1986 Brooks noted that the technique worked where it was possible to generate an exhaustive 

specification involving limited sets of parameters and known solution methods exist, e.g. for sorting or 

integration of differential equations. Such systems do not generalise well and even in the cases outlined 

have not contributed to increasing productivity. 

Graphical programming works on the premise that some diagram can capture the program structure. 

Brooks argues that this is bound to fail because of the size limitations of the visible screen and the 

multidimensional and unvisualisable nature of programs.  The analogy with VLSI chip design is flawed 

because chips are layered and two-dimensional where the geometry can reflect the essence of the 

connections that are required.  Software systems do not reflect  

COMP319 14 



Program verification prior to coding in 1986 (and now) was/is the subject of 

much research.  The premise is that if you can verify that the design is free of 

bugs productivity and product reliability is enhanced.  The immense effort 

involved in testing programs is avoided if such a verification step can be done as 

part of the design step. Brooks noted that while this was a powerful concept, 

especially for system kernels and secure operating systems the method does not 

save effort.  Verification involves so much work that only a few crucial programs 

have ever been verified. Similarly mathematical proofs too except in very simple 

cases seem always to be faulty –  leading to the conclusion that while verification 

might reduce the program testing load, it cannot eliminate it, and cannot 

eliminate it in predictable ways.  At best program verification can only establish 

that a program meets its specification – the hardest part is arriving at that 

specification in the first place.  Much of the essence of building a program is in 

fact the debugging of the specification. 

New programming environments and software tools provide scope for the biggest 

gains in productivity.  The use of language specific editors and integrated 

databases keeping track of detail for recall by the programmer and his colleagues 

working on a software project was estimated by Brooks as being very 

worthwhile, but the productivity grains were likely to be marginal. 

 

 

COMP319 15 



COMP319 16 



 

 

COMP319 1 



This side of the millennium what is different in computing, and what is different 

in software engineering? 

The most important thing, without doubt, is the cost of the products. 

In 1972 the Michigan Terminal System was implemented on an IBM model 

360/68 that cost about £1.5 million, of which £60K was for the building 

modifications and water cooling system.[Accidental tasks included handling 

fungus in the cooling pipes – bugs indeed!]. 

Now for about £1,000 I have about the same processing power and about the 

same disk space on this laptop. The key difference is that only I use the laptop 

whereas the 360 had about 250 simultaneous users at any time 24 hours a day, 7 

days a week.  It also had access to gigabytes of tape storage – though it needed a 

team of about 7 computer operators to keep it fed, watered, milked, serviced and 

taped. 

The second change has come about because of the first.  Computers are now 

everywhere. These are essentially still “computers”, but soon the computer will 

vanish into your telephone, car, television, radio, clothes, container, under your 

pet’s skin, and probably into a small cavity in your skull. 

A part of this change, and probably inseparable from it, is that many of these 

computers are connected. The connections are by wire or some part of the 

electro-magnetic spectrum: e.g. radio, microwaves, infra-red, sound, and laser 

light. 

The software has changed too. 

COMP319 2 



We can see that processor clock speed for current silicon technologies is hitting a 

wall in terms of “free” speed up of software execution. 

New processors rely on using multi-core technology to improve performance. 

Unless the software has been optimised for running in parallel then no 

performance increase will be achieved, by adding more processors. 

 

COMP319 3 



We can see how the larger the problem size is (in terms of processed data) the 

larger the difference between non-optimised and optimised code is. 

These figures are from the Spiral project at Caregia Mellon University. 

www.spiral.net. 

Their core research question is “Can we teach computers to write fast libraries?” 

 

COMP319 4 

http://www.spiral.net/


COMP319 5 



COMP319 6 



We can see that the amount of code and the code complexity has to be increased 

considerably to make use of more than 1 processor. To optimise the code further 

it needs to be able to handle more than 2 processors. Image doing the same 

optimization with a sort routine, what kind of sort algorithm would work well? 

 

COMP319 7 



Software is now boxed and shrink wrapped or delivered automatically through 

some connection method. (Does everyone know how to use zip/unzip, etc?) 

The users have changed too. They are everywhere not just behind business work-

desks. Their requirements are for general tools, to be sure, but increasingly for 

niche products: computer games, genealogy software, finite element packages, 

music and image manipulation, DNA pattern search tools, etc.  In each of these 

areas several producers exist – and where necessary the user can write the niche 

stuff himself using both general tools and niche targeted tools. 

However, the main difference is that the main driver for application development 

is no longer business it is the home and niche markets.  Much of what business 

does can be achieved with general tools, indeed the general tools which now 

exist: the word processor, spreadsheet, database were originally business specific 

tools. 

 

 

COMP319 8 



But what is new and different comes because of new products. 

The software engineering process, as predicted by NSB, has not changed 

significantly.  The key agent is still the talented programmer concentrating on the 

“conceptual integrity” of the product. There are just many more of them out there 

and not all of them have been snapped up by Microsoft or Oracle. 

The programmer is still battling with the same creative tasks and accidental 

problems and still having problems with his conceptual design. 

However, in some niche areas think say of games production, a multitude of tools 

and techniques have evolved that aim to ensure that a “new” product, say a Harry 

Potter game, can be brought to market in about 3-9 months. 

Development constraints and deployment constraints still remain although the 

numbers (e.g. of memory available to do the development or in the target 

computer, might increase 

COMP319 9 



COMP319 10 



It is common now for software to require porting to mobile devices. This has 

particular challenges, in terms of platform fragmentation and therefore porting 

between platforms. Network connectivity for mobile applications is wireless, this 

is power hungry and often unreliable. Software has to be optimised for this 

unreliable network service. 

COMP319 11 



Ubiquitous computing – is defined as being “computing everywhere” . Perhaps 

the most exciting being the idea of wearable computers, in the very fabric of your 

clothes. 

Intelligent sensing and processing, especially to process voice (e.g. voice 

interfaces), vision (I.e. computers that can see), and devices that relay touch to 

and from users (haptic devices). 

Massive connectivity achieved by using all forms of communication and then 

using the connectivity and spare processing capacity to solve inherently difficult 

problems (includes grid computing). 

Critical systems and dependable software.  This is one of the key areas for 

software engineering. All the skills: fault avoidance, fault detection and recovery, 

and fault tolerance computing are required and are currently research issues.  

Examples are: power system monitoring, medical systems, telecommunication 

switches, aircraft auto-piloting. 

Secure systems include banking and finance systems that should be impervious to 

accidental and malicious damage.  These systems are often also critical systems. 

Configuration modelling is the area that configures equipment and services to 

meet specific criteria. Used in, e.g. telecommunications, to configure systems 

based on information such as equipment availability, usage traffic, cost, and 

services required. 

 

COMP319 12 



 

 

COMP319 1 



Management of a software project involves managing the resources – crudely 

these are time, people, and quality.   

The tasks involved in project management follow naturally from this. Project 

planning is the management of all three. Risk management is management of 

quality. Project scheduling is management of time. People management is 

management of cost though of course other elements of cost (e.g. equipment) 

must be considered too. 

COMP319 2 



If there is one thing that you take away from this course, it should be this 

diagram. 

(Quotes here are from Rudy Rucker‟s book “Software engineering and computer 

games”, 2003, Addison-Wesley Pearson Education Ltd)  

Software engineering is all about working within the constraints imposed by 

time, cost (usually in terms of people) and quality (in terms of features and/or 

bugs). 

“In a fantasy world we‟d like our projects to be done instantly, to cost nothing, 

and to be of infinitely good quality. However, in the real world we must 

compromise – it is impossible to achieve all three goals of zero time, zero cost 

and infinite quality. 

You can decrease the time needed but will need to add more staff and/or reduce 

the quality. 

You can reduce the cost by using fewer staff, but the project will take more time 

and/or reduce in quality 

You can opt for high levels of quality, but this means it will cost more and/or take 

more time. 

In general any change in one goal must be compensated for by changes to one or 

both of the other goals. 

If you let your customer (or your manager) specify all three corners of the 

constraint triangle, your project is doomed to fail.” 

COMP319 3 



Rucker notes that NASA briefly adopted the slogan „Faster, cheaper, better‟. However, 

after a series of disastrous projects the slogan was quietly but quickly abandoned. The 

lesson they had learned was that such a slogan is impossible to satisfy. 

Wags in the software engineering world modified the slogan to „Faster, cheaper, better: 

pick two out of three” … 

 

COMP319 3 



COMP319 4 



COMP319 5 



All schedules need to be monitored – failure to monitor the schedules is as bad as 

not having a schedule in the first place – and leads to disaster. 

Similarly, it is no good monitoring that a schedule is slipping if there are no 

remedies to solve the problem – and for reasons we shall see, just adding 

manpower is often not a solution. Indeed it may compound the problems. 

Finally what should the schedule contain: work blocks; deliverables; tasks; 

milestones; – or all all of them. Clearly the answer is as many are required for the 

project in hand.  

To monitor the project the schedule one of the most useful is the milestone – a 

time point where the others (blocks, deliverables and tasks) will be assessed.  

 

 

COMP319 6 



We can see that failure to observe the rules of the constraint triangle leads to 

software engineering disasters – which we can define as projects over time, over 

budget, and/or not doing what they should do or being full of bugs. 

One way to avoid such problems is to have realistic project estimation and to 

have reliable strategies in place for when the estimates begin to wobble – which 

they surely will do. 

(Put another way, there is a tendency to underestimate the resources required to 

deliver a particular level of quality). 

Last week we noted that software development was hard to do because of the 

inherent complexity and for this reason developing software takes time. 

Because of the complexity we get unpredictability; and for this reason estimating 

project costs is also hard to do. 

To avoid the disasters it is necessary to have good (honest) management, to 

develop realistic time schedules, to have extensive project monitoring in place 

and some reliable strategies to resolve the inevitable creeping delays and costs 

that find their way into the project. 

 

COMP319 7 



Imagine this schedule: (taken from Brooks MMM, p22-26) 

There is a task estimated to take 12 man months. 

It is assigned to 3 men for four months. 

There are 4 mileposts, falling at the end of each month. 

Note that months are along the x-axis, and men allocated to the project along the 

y-axis. 

 

COMP319 8 



Here we illustrate that the the first milepost is not reached until two months have 

elapsed. 

The open line indicates the past, the simple line the future. 

There has been slippage of one month. 

Notice, incidentally, that because of the milestone we have at least spotted the 

slippage. 

What do we do ? and 

What strategies are available to us to remedy the situation ? 

Assume that the task must be done on time. Assume that only the first part of the 

task was miss-estimated so the figure tells the story accurately. This is one 

months delay for 3 men leaving 9 man months of estimated effort remaining and 

2 months for completion. 9/2 = 5 men are now required to complete the task, that 

is 2 extra. 

 

COMP319 9 



2) Assume that the task must be done on time. Assume that the whole estimate 

was uniformly low, so that the figure above is really the situation.  That is, it has 

taken 3 men two months (6 man months) to get here, there are 3 phases left 

requiring 6*3 = 18 man months of effort.  The time left is 2 months, thus 18/2 = 9 

men are required; we need to add 6 to the 3 already on the project. 

 

COMP319 10 



COMP319 11 



COMP319 12 



The problem is that there is a lag in implementing any solution. 

In this case the assumption that we must complete in 4 months is disastrous.  

Adding people, however talented and assuming rapid recruitment … will divert 

one of the existing people (say, for a month) wasting his time and one man 

months effort from each of the new men. (either 3 or 7 m/m). 

Further, work already done will be lost and extra work will need to be done by 

way of testing because more men are now working on the project, and 

introducing bugs.  One solution might be to add yet more men. Using the 

assumptions of Strategy 1 a total of 7 men would now be required; given training 

time, etc … the project would be as late as if no further men were added. 

 

The same is true, with even more disastrous cost implications if Strategy 2 were 

used. 

 

This leads to Brooks‟ Law: Adding manpower to a late software project makes it 

later. 

 

Doing the diagrams is one way to appreciate this. But what are the problems. 

 

Before moving on; it is important to note that working with milestones in this 

way does not need to affect the other aspects of the planning namely; the work  

COMP319 13 



packages, tasks, and deliverables involved but often does so – simply because of the 

nature of the constraint diagram. 

COMP319 13 



The first problem is that while cost does vary as the product of the number of 

men and the number of months … project progress does not. 

The man-month as a unit for measuring the size of a job is dangerous, and worse, 

deceptive. 

 

Men and months are interchangeable only when a task can be partitioned with the 

assumption that there is no communication among the workers.   

True of (say) gathering crops not even approximately true in software 

engineering. 

 

COMP319 14 



When a task cannot be partitioned, because of sequential constraints, the time 

versus men graph is a flatline, the application of more effort has no effect on the 

schedule. 

 

True of childbirth which takes 9 months, and true of many software engineering 

tasks such as debugging, because of the sequential nature of the task. 

 

Thus, it is important to know how sequential the task is.  If it is highly sequential, 

then it is highly constrained in terms of time required.  

Partitioning tasks is evidently desirable so that more development effort can be 

added to the project if its running late. 

 

COMP319 15 



COMP319 16 



 

 

COMP319 1 



Communication is in two parts: training and intercommunications  

Training is required: in the technology, the goals of the project, the overall 

strategy and the plan of work. Training cannot be partitioned each new man must 

go through it individually. 

Intercommunication is required in more complex tasks such as software 

engineering. It assumes that to complete the task workers must have pairwise 

communications. 

If each part of the task must be separately co-ordinated with every other part the 

effort required increases in a complex way. 

Software construction is inherently a team effort and the communication time 

required is one that cannot be ignored and quickly dominates any partitioning 

strategy and project costing. 

 

COMP319 2 



COMP319 3 



The first question is what are we guessing at … well it’s time.  More particularly, 

it is time to write some standard number of lines of code, or some function (as a 

subroutine or sub-process). This is fearsomely complicated because it involves 

target language, methodology, skills involved, learning required, etc. etc.  

Another problem is, what is the goal.  Is it the completed prototype?, the alpha 

release (alpha-1 is considered the first field testable version), or the beta release 

(beta-1 is the first released version). 

Brooks, in MMM presents his rules of thumb for scheduling a software task as 

about half on debugging of completed code and about 1/6 on coding (the bit 

which is easiest to estimate). 

Planning is given 1/3 of the total time,  however, he notes that this does not 

include research time or exploration of new techniques.  Where the learning 

curve is steep (e.g. in honours projects ? This part can consume more than 50% of 

the time and lead to nothing being delivered …) 

The other key point of experience is that failure to allow enough time for testing 

is particularly disastrous.  Because, this comes at the end of the schedule near the 

delivery milestone, slippage affects customers and badly reflects on the project as 

a whole. 

We thus see the tricky balance between design at the beginning taking too much 

time – and full system testing at the end.   

COMP319 4 



COMP319 5 



Rudy Rucker (San Jose State University) graduate level course. His book 

(“Software engineering and computer games”, 2003, Addison-Wesley Pearson 

Education Ltd) is a good one if: a) you are a student; b) you are embarking on a 

software project to be completed with about 2-3 man months of effort (i.e. 

roughly an honours project); c) you are planning to write software games. 

Rucker develops Brooks idea of using a 1/3 of the time for planning, by 

suggesting that planning the architecture (essentially the user interface – which 

we will return to later in the module) should be the goal.  He notes that time spent 

on good architecture will save time in coding and debugging. 

He also suggests not doing the waterfall thing, nor really the spiral thing, but a 

much more concrete thing based on producing small field releases until a final 

design and feature freeze can happen. 

The calls this the “Inventor Lifecyle” … but note this is for students on short 1 to 

4 man projects. 

 

COMP319 6 



COMP319 7 



COMP319 8 



COMP319 9 



COMP319 10 



COMP319 11 



Molokken-Ostvold, K. Haugen, N.C. (13 April 2007). "Combining Estimates 

with Planning Poker--An Empirical Study". IEEE 

This showed the planning poker technique produced estimates were less 

optimistic and more accurate than estimates obtained through other approaches 

such as mechanical combination of individual estimates for the same tasks. 

COMP319 12 

http://en.wikipedia.org/wiki/IEEE


COMP319 13 



COMP319 14 



COMP319 15 



COMP319 16 



COMP319 17 



COMP319 18 



COMP319 19 



COMP319 20 



Note this is often not used. The VAF will adjust the raw FP count by a factor of 

about 2 either way. In general function point tool use the raw FP count.  From 

devdaily.com/FunctionPoints 

“I can't tell you much about the history of the VAF, but what I can tell from the 

conversations I've had with many other users is that they don't use the VAF. This 

stems from at least two reasons that I can determine: 

Most users count function points to derive a number that they can plug into 

another piece of software to determine a cost estimate. Those other software 

applications usually have their own equivalent of the VAF, and in fact, instruct 

you to supply the ``raw FP count''. So, in this case, the VAF competes against 

these vendor tools. 

Some users don't feel that the GSCs are flexible enough. I tend to agree, and I 

think it's an easy argument. When you look at the math below, you'll see that for 

two applications under consideration, if both start with the same function point 

count - let's say 1,000 FPs - after adjustments the hardest application in the world 

would be rated at 1,350 FPs, and the easiest possible application would be rated 

at 650 FPs when adjusted. Let's say the hardest application in the world had to 

run on 10 different operating systems in 15 languages and be distributed 

electronically to 1 million users, and the easiest would be written in Microsoft 

Access, run on Windows, and be used by only one user, the author of the 

program. Do you really think the first application is only about twice as hard to 

deliver as the second? No, I certainly don't, and this is why I don't use the VAF.” 

COMP319 21 



 

 

COMP319 1 



COMP319 2 



COMP319 3 



COMP319 4 



Individuals in a project may vary in their productivity by a factor of 10 (Boehm, 

et al. 1995), that is from 4 object points per month to 50. 

The composition of the team and other factors must be taken into consideration in 

the overall estimate being made. 

These other factors are: 

Knowledge of the application domain 

The software process used in development – if these are good productivity is 

higher (we return to this later) 

Large projects need communication with less time for development and high 

productivity 

Good CASE tools, configuration management system etc improve productivity 

Quietness and private areas contribute to better productivity 

 

COMP319 5 



Using historical cost information an equation is developed that relates some 

software metric (usually size) to cost. Estimates of the metric then predict the 

cost/effort required. 

Multiple experts estimate, then discuss and agree a compromise cost. 

The cost of new project is estimated by analogy with comparable completed 

projects. 

Parkinson’s Law: work expands to fill the time.  If there are 5 people and the 

software must be delivered in 6 months then the effort estimate is 30 person 

months. 

The customers budget determines the cost. Makes sense if the system can be 

shipped to a subsequent customer. 

However, most methods assume that will be no significant changes in the way 

software development is done.  Changes in the past 10 years have shown that this 

is not a safe assumption.  Examples of changes that affect estimation include: 

Distributed and grid based systems 

Web facilities 

Entity Resource Planning or db centred systems 

Shrink wrapped software 

Module reuse 

Scripting facilities 

CASE tools 

 

COMP319 6 



Constructive Cost Modelling (COCOMO) is an algorithmic model that is well 

known, widely used as a commercial tool, and software for it is in the public 

domain. 

It was first proposed by Boehm, B. in his 1981 book “Software engineering  

economics”, Prentice-Hall. The definitive book for the method is Boehm, B. 

(2000) “Software Cost Estimation with COCOMO II”, Prentice-Hall. 

Summary of the COCOMO II method is in the paper Boehm, B., Clark, B. et al. 

(1995) “Cost models for future software life cycle processes: COCOMO II”, 

Annals of Software Engineering, Vol 1, p57-94. 

COCOMO assumes a stable software house or software department for which 

historical measures of software productivity exist. Where this is not available, the 

published data from finished software projects may be used. 

In 1981 COCOMO was based on the waterfall model using a programming 

language. Now, it can cope with changes in method (e.g. the spiral or incremental 

model etc), use of shrink wrapped components such as Oracle that provides both 

a DBMS and full database programming language, and the use of various CASE 

tools and hardware. 

 

COMP319 7 



COMP319 8 



COMP319 9 



COMP319 10 



Early Design model 

Used once the requirement is finalised and an architecture design is required with an 

estimate of cost. It is based on the 

formula:<read> 

A is a constant which based on Boehms data is 2.94; The size is thousands of lines of 

source code : KSLOC – obtained by calculating the function points required (there are 

look-up tables to do the relationship between function points and KSLOC). 

The exponent (B) varies from 1.1 to 1.24 and covers an estimate of the novelty of the 

project. As novelty increases the number of lines of code and thus effort increases. 

The constant M is the product of seven project and process characteristics measured on 

a scale from 1 (very low) to 6 (very high). 

RCPX product reliability and complexity 

RUSE reuse required 

PDIF platform difficulty 

PERS personnel capability 

PREX personnel experience 

SCED schedule 

FCIL support facilities. 

From this we get: 

PM = 2.94 x Size**B x (RCPX x RUSE x PDIF x PERS x PREX x SCED x FCIL) 

 

COMP319 11 



Reuse Model (A) 

Two variants exist based on whether all code is automatically generated (A) or 

some is automatically generated and some newly written (B). 

 Reuse of code is perhaps best illustrated in computer game software, where new 

story lines lead to new games – e.g.  Harry Potter. 

Code that does not need to be understood to reuse it is termed black box code, 

and the development effort associated with it is deemed to be zero. 

Code that has to be modified to be reused, is termed white box code, and effort is 

required to understand and modify it. 

In addition code may be automatically generated – adding a second form of 

reuse.  

(A) For code automatically generated the formula used is:  

ASLOC is the number of lines of code in the component that have to be adapted. 

AT is the percentage of adapted code that is automatically generated and 

ATPROD is the integration productivity of staff. ATPROD is currently assumed 

to be about 2,400 source statements per month (Boehm et al., 2000). 

e.g. If there is a total of 20,000 lines of white-box reused code in a system and 

30% is automatically generated, then PM(auto) is: (20,000 x 30/100) / 2400 = 2.5 

person months. 

 

COMP319 12 



Reuse Model 

(B) In the reuse model where there is some new code and some reused code, the 

effort required is calculated indirectly. Thus, based on the number of lines of code 

reused, it calculates a figure that represents the number of lines of new code. 

e.g. With 30,000 lines of code to be reused, the new equivalent size estimate 

might be 6,000; or put another way 6,000 new lines are required to reuse the 

30,000. This calculated figure is added to the number of lines of new code to be 

developed in the COCOMO II post-architecture model. 

The estimates in this reuse model are thus: 

ASLOC – number of lines of code in the component that have to be adapted 

ESLOC – equivalent number of lines of new source code 

The ESLOC figure summarises the effort required in making changes to the 

reused code and for making changes to the system to integrate the code.  It also 

takes into account the automatically generated code where the calculation is as 

above. 

We now can calculate the equivalent lines of source code as: <read> 

ASLOC is reduced according the the percentage of automatically generated code. 

AAM – Adaptation Adjustment Multiplier. A sum of: the cost of making the 

changes, cost of understanding the code, and an assessment factor which 

determines whether the code can be reused. 

This model is non-linear, as more and more reuse is contemplated, the cost per  

COMP319 13 



code unit reused drops. 

 

COMP319 13 



Post-Architecture Model 

Once an initial architectural design is available and the structural units are known 

the post-architectural COCOMO II model can be used. It uses the same exponent 

based formula seen before: It is assumed this will now be more accurate and uses 

a more extensive set (17) of product, process, and organisational attributes as 

more information is now available. The model uses an estimate of:  

1. the total number of lines of new code to be developed;  

2. the equivalent number of source lines of code (ESLOC) needed calculated 

using the reuse model and 

3. 3. the number of lines of code that have to be modified because of changes in 

the requirements. 

These values are added to give KSLOC. B (which is continuous, as before) is 

made up of 5 scale factors rated on a six point scale from very low to extra high 

(5 to 0). The ratings are summed and divided by 100 and added to 1.01 to get the 

actual exponent used. The factors cover: the previous experience with this type of 

project – a new project scores low (say 4); freedom from client involvement  – no 

client involvement rated very high (say 1); risk analysis done – no risk analysis 

rated very low (say 5); team cohesion and experience of working together – rated 

nominal (say 3); and process control maturity – some process control present, 

rated nominal (say 3).  

In this example the sum is 16 which we divide by 100. Add 0.16 to 1.01 to give a 

value for B of 1.17. M is calculated using 17 project cost drivers covering the  

COMP319 14 



product, the hardware, personnel, and the project (7 covered earlier). The are estimated 

based on experience and in practice are difficult to use with any accuracy. 

 

COMP319 14 



COMP319 15 



COMP319 16 



OBJECT ORIENTATION AND 

OBJECT PATTERNS 

© University of Liverpool COMP 319 slide  1 



Language levels 

© University of Liverpool COMP319 slide  2 

Microcode (tells the processor how to interpret machine language instructions) 

 Machine language (ultimate output of compiler and/or assembler) 

 Assembly languge (e.g. IBM or Intel assembly language) 

High-level language (e.g. C, Pascal) 

Object-oriented language (e.g. C++, Smalltalk, Java, C#) 



Classification 

© University of Liverpool COMP319 slide  3 



Encapsulation & Inheritance 

© University of Liverpool COMP319 slide  4 



Benefits of OO approach 

• Inheritance - classes 

• Encapsulation - classes + methods 

• Polymorphism - function 

• good Cohesion 

• good Coupling 

 

© University of Liverpool COMP319 slide  5 



OO Analysis    (!= OO design) 

“ … is figuring out how to arrange a collection of 
classes that do a good job of representing 
your real-world problem in a format which a 
computer programmer finds easy to deal 
with.” 

- Input 

- Thinking effort 

- Pencil, paper and Notebook 

- Observations 
- Output 

- Answer to “which classes to use?” 

- UML diagrams 

 
© University of Liverpool COMP319 slide  6 



Object Orientated design 

“ … is about what kinds of data and 
method go into your classes and about 
how the classes relate to each other in 
terms of inheritance, membership and 
function calls.” 
- Input 

- Thinking effort + Pencil Paper, Notebook 

- OOA diagrams 

- Output 
- UML diagrams 

- Header files (e.g. *.h files) 

 
© University of Liverpool COMP319 slide  7 



Role of documentation 

• Central communication 

- Cut down on communication overhead 

• Control 

- If it’s not in the specification, it won’t 
be built 

• Annotation 

- Particularly of code but also design 

• Operational 

- User/system manuals 

 © University of Liverpool COMP319 slide  8 



Types of Documentation 

• UML diagrams 

• User Guides 

• System Guides 

• Management documents 

• Requirement and Specification 

• Schedule and Budget 

• Organisation and Planning 

 

© University of Liverpool COMP319 slide  9 



Design Patterns 

© University of Liverpool COMP319 slide  10 



Software Evolution  Patterns 

 

© University of Liverpool COMP319 slide  11 

Microcode (tells the processor how to interpret machine language 

instructions) 

 Machine language (ultimate output of compiler and/or assembler) 

 Assembly languge (e.g. IBM or Intel assembly language) 

High-level language (e.g. C, Pascal) 

Object-oriented language (e.g. C++, Smalltalk, 

Java) 

Software design patterns 



Design patterns 

• Repeatable approaches to problem 
solving in software design 

• Not locked into any 1 language (but 
often use OO concepts) 

• Speed up development 

• Increase software flexibility 

• Make software more readable 

• Can be implemented as components 
which will move from reusable design to 
reusable code 

 

 
© University of Liverpool COMP319 slide  12 



Design Pattern types 

• Architectural (approach to designing the 
whole system) example MVC 

• Creational 

• Structural (one class/method wrapping 
another) 

• Behavioural 

- Example : call backs, persistence 

• Concurrency 

- Controls multiple threads 

© University of Liverpool COMP319 slide  13 



Model View Controller 

• Problem 

- Many different GUI APIs 

- GUI code can be very complex and 
messy 

- Porting GUI code between platforms is 
hardwork 

 

© University of Liverpool COMP319 slide  14 



MVC Components 

• Splits the code into 

- Model 

- Stores, retrieves and manipulates the data 

- View 

- Renders the data on the screen 

- View fetches data from model 

- Controller 

- Processes user input, passing events to 
model 

- Controller can instruct view to render 

© University of Liverpool COMP319 slide  15 



Model 

• Provides the following 

- business logic, rules (e.g. who can 
access a student's transcript) 

- validation (can also be in controller) 

- persistence 

- application state (session) 

- shopping cart for user 

- address book, contact list 

- logged in user id 

© University of Liverpool COMP319 slide  16 



View 

• Presents the information to the user 

• Example View technologies 

- JSP   allows user to use Java to 
generate web pages 

- CSS  web page presentation 

- HTML/XML 

- .aspx   Microsoft dynamic web 
technology 

© University of Liverpool COMP319 slide  17 



View/Controller options 

• Java servlets and JSP   (browser client) 

- Java EE (Tomcat or Glassfish) 

• .NET aspx pages   (browser client) 

- Microsoft Server 

• J2ME MIDP 

- Mobile Java 

• Java AWT/Swing 

- Java SE 

© University of Liverpool COMP319 slide  18 



MVC Example 

© University of Liverpool COMP319 slide  19 

Email 

database 

Email 

server 

View 

JSP 

Controller 

ServletRequest 

View 

J2ME 

forms 

Controller 

J2ME 

listeners 

Java EE 

Web service interface 



Model code example 

Plain old Java class 

class Customer { 

    private String surname; 

    private String forenames; 

    private Date dateOfBirth; 

} 

Note this class can be ported to any 
platform that supports Java 

 
© University of Liverpool COMP319 slide  20 



View code example 

Class CustomerForm extends Form { 

     private TextField tfSurname; // text field input 

surname 

     private TextField tfForenames; // forenames input 

     private DateField dfDateOfBirth; // date of birth 

input 

     private Command ok; 

} 

 

© University of Liverpool COMP319 slide  21 



Controller Code (J2ME) 

CustomerFormListener implements CommandListener { 

   CustomerForm customerForm; 

   public void commandAction(Command c, Displayable 

displayable) { 

       if ( (c.getCommandType()==Command.OK)) { 

                    Customer customer=customerForm.getCustomer(); 

                    customer.Save(); 

       } 

} 

© University of Liverpool COMP319 slide  22 



MVC Model View Controller 

• Benefits 

- Clear seperation of concerns 

- Easier to port software UI platform to UI 
platform 

• VC code 

- Can be implemented by GUI specialist 

• Team working 

- Web, Mobile App (iOS, Android), Mobile 
Web 

- Business logic 



Command pattern 

• Command 

- general abstraction for controller type 
interactions 

- allows controller API to change and 
keep business logic the same 

• Code example 

interface Command { 

   void    OnExecute(); 

} 

© University of Liverpool COMP319 slide  24 



Command interface detail 
public abstract class Command { 

     private Hashtable <String,Object> callParameters=new Hashtable(); 

     private Hashtable <String,Object> returnParameters=new Hashtable(); 

     protected abstract void OnExecute(); 

      

     protected void setCallParameter(String name,Object object) { 

         callParameters.put(name, object); 

     } 

 

     public void setCallParameters(Hashtable parms) { 

         this.callParameters=parms; 

     } 

 

     protected Object getCallParameter(String name) throws 
ParameterNotFoundException { 

         if (callParameters.containsKey(name)) { 

             return(callParameters.get(name)); 

         } 

         throw(new ParameterNotFoundException()); 

     } 

} 
© University of Liverpool COMP319 slide  25 



CommandManager 
public class CommandManager { 

public void Execute(Hashtable parameters) throws 
NoSuchCommandException,CommandNameMissingException { 

        String packageName="patterns.commands"; 

         if (!parameters.containsKey("name")) { 

            throw (new CommandNameMissingException()); 

        } 

        String name=(String)parameters.get("name"); 

        String commandName=packageName+name; 

        try { 

           Class commandClass=Class.forName(commandName); 

           Command commandObject=(Command)commandClass.newInstance(); 

           if (parameters!=null) { 

              commandObject.setCallParameters(parameters); 

           } 

           commandObject.OnExecute(); 

        } catch (Exception exc1) { 

            throw (new NoSuchCommandException(name));   // problem with command 
class 

        } 

    } 

 

     

} 

© University of Liverpool COMP319 slide  26 



HttpCommandManager extends CommandManager 

 public void Execute(HttpServletRequest request) throws 
NoSuchCommandException, CommandNameMissingException { 

        Enumeration allNames=request.getParameterNames(); 

        Hashtable <String,Object> parameters=new Hashtable 
<String,Object> (); 

        while (allNames.hasMoreElements()) { 

            String pname=(String)allNames.nextElement(); 

            String parmValue=request.getParameter(pname); 

            parameters.put(pname, parmValue); 

        } 

        Execute(parameters); 

    } 

© University of Liverpool COMP319 slide  27 



Factory class 

• Factory method constructs instances of a 
class 

• Problem 
• Constructing a Image class 
o Image format could be png, gif, jpg 
o Each format could have different image class 

 

o Calling code needs to use different class 
depending on image type 

o ImagePNG image=new 
ImagePNG(“/picture.png”); 

o Type may not be know till runtime 

 © University of Liverpool COMP319 slide  28 



Factory example 

• Solution 
o Use inheritance from abstract class Image 

© University of Liverpool COMP319 slide  29 

Image 

ImagePNG ImageGIF ImageJPG 



public static  createImage(String fname) throws 
Exception { 
   if (fname.endsWith(“.gif”)) { 

      return( (Image) new ImageGIF(fname) ); 
    } 

    if (fname.endsWith(“.png”)) { 

       return( (Image) new ImagePNG(fname) ); 
    } 

    if (fname.endsWith(“.jpg”)) { 

       return( (Image) new ImageJPG(fname) ); 
    } 

    throw new Exception("Unknown image type 

for file "+fname); 
} 

 
© University of Liverpool COMP319 slide  30 



Singleton 

• Single instance of class 

• Constructor is private 

• static final Class instance constructed 

when application loads  

• or loaded only when need (lazy 

initialization) 

• Examples of usage 

– to access database so that all threads go 

through one control point 

– Font class keeps memory load low 

 

 © University of Liverpool COMP319 slide  31 



Singleton Example in Java 

public class DbaseConnector { 

    private static final DbaseConnector instance=new 

DbaseConnector(); 

    private DbaseConnector() { 

             // database construction code….. 

    } 

 

    public static DbaseConnector getInstance() { 

         return(instance); 

   } 

} 

 © University of Liverpool COMP319 slide  32 



Singleton Example (lazy initialization)  

public class DbaseConnector { 

    private static DbaseConnector instance; 

    private DbaseConnector() { 

             // database construction code….. 

    } 

    public static DbaseConnector synchronized getInstance() { 

         if (instance==null) { 

              instance=new DbaseConnector(); 

         } 

         return(instance); 

   } 

} 

 
© University of Liverpool COMP319 slide  33 



Wrapper classes 

• Problem 

– Different external technologies to 

connect to 

– Example for database connection 

• ODBC  (Microsoft) 

• JDBC  (Java standard) 

– Other examples 

• External Credit card payment 

• Network connection (Java and Microsoft) 

• Data structure libraries  

 © University of Liverpool COMP319 slide  34 



Wrapper classes 

• Problem with coding directly 

– Code will end up messy 

– Hard to port 

– Hard to understand 

• Benefits of wrapping code 

– easier to swap modules (e.g. CC 

function) 

– easier to implement standard functions 

(e.g. accountancy, error logs) 

© University of Liverpool COMP319 slide  35 



Wrapper example (unwrapped code) 

String sql="select * from customers"; 

      try { 

            java.sql.Statement        
s=dbConnection.createStatement(); 

            int rows=s.executeUpdate(sql); 

             

        } catch (Exception e) { 

            status=sql+" "+e.toString(); 

             

        }; 

 

© University of Liverpool COMP319 slide  36 



Wrapped code 

public class SQLHelper { 

   public void executeSQL(String sql) { 

          try { 

                java.sql.Statement 

s=dbConnection.createStatement(); 

                int rows=s.executeUpdate(sql);             

          } catch (Exception e) { 

            status=sql+" "+e.toString();           

        }; 

} 

} 

 © University of Liverpool COMP319 slide  37 



Adapter class diagram example 

© University of Liverpool COMP319 slide  38 



Abstract factory 

• Used when you have an associated set 
of object types to create, but the actual 
class to create is decide at run time 

• Example: 

- Sets of encryption algorithms from 
different providers 

- User interface components for 
different OS UI API 

© University of Liverpool COMP319 slide  39 



Abstract Factory class diagram 

© University of Liverpool COMP319 slide  40 



Abstract factory code example 

interface SecurityFactory { 

   public Encryptor createEncryptor(); 

} 

class LowSecurityFactory implement  SecurityFactory { 

    public Encryptor createEncryptor() { 

           return(new ShortKeyEncryptor()); 

    } 

} 

class  HighSecurityFactory implement SecurityFactory { 

    public Encryptor createEncryptor() { 

           return(LongKeyEncryptor()); 

    } 

} 

 

© University of Liverpool COMP319 slide  41 



Abstract factory example 
class Application { 

           private Encryptor encryptor; 

 public Application(securityFactory sfactory) { 

                 encryptor=sfactory.createEncryptor(); 

 } 

} 

 

class Start { 

    public static void main(String argsv[ ]) { 

        Application application; 

        if (professionalVersion) { 

              application=new Application(new HighSecurityFactory()); 

        } else { 

              application=new Application(new LowSecurityFactory()); 

        } 

    } 

} 

 
© University of Liverpool COMP319 slide  42 


