
EXAMINER : Mr Sebastian Coope

DEPARTMENT: Computer Science

JANUARY 2014 EXAMINATIONS

COMP319 : SOFTWARE ENGINEERING II

TIME ALLOWED : Two and a Half Hours

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A

(Section A is worth 70%)

Answer All questions in Section B

(Section B is worth 30%)

PAPER CODE NO.

COMP 319

January 2014 The University of Liverpool

Paper Code : COMP319 Page 2 of 9

Section A

Answer ALL questions in Section A. Section A is worth 70% of the marks available.

A1 (a) In software engineering what is the constraint triangle and comment on

when it might be ignored? (10 Marks)
The constraint triangle described by Rucker (2003) captures implicitly the idea behind most costing and

estimations methodologies and presents an equation in 3 terms that must be in balance. Graphically it is

represented as a triangle where the vertices are labelled; Cost, Time, and Quality. Cost is in terms of the number

of people and other resources that are required to complete the software. Quality is a measure of the number of

features the software is to include and of how extensively it will be tested. Time is a measure of how long the

project will take to complete. The aim in software engineering is to properly balance cost, quality and time.

Control of time ensures that the project is delivered to a deadline. Control of cost means that the project is

affordable. Quality control ensures that the software developed is attractive to users. Only in an ideal world may

the constraint triangle be ignored. In such an ideal world a software project would have an infinite number of

features, will cost nothing and be available instantly. In all other worlds, time to complete a project may be

decreased by increasing personnel, reducing features and/or test quality. Cost may be reduced by using fewer

programmers; but this may involve longer development times and reduction in quality. A higher level of quality

may take more time and/or cost more.

(b) Explain with the aid of an example and class diagrams the application and
benefits of the use of the following object patterns:

Factory (10 Marks)
Factory classes are classes that are used to generate instances of a class. The factory class approach

has advantage over standard object creation using a constructor, is that is allows the actual object

type to be deferred to run-time. For example, imagine you are creating a class which will handle and

render image data on a screen. You might want a different class type depending on the image data

contained, so for png format you might have a class called ImagePNG for a jpg format you could have

a class called ImageJPG. This becomes a problem when creating instances of the classes, since only at

runtime you will know the type of the object concerned. The solution is to define an interface, called

Image, and this will be the type handled by the calling code, like so: [6 Marks]

public interface Image {

 public Image(String filename) {};

 public drawImage(Graphics g) { };

}

January 2014 The University of Liverpool

Paper Code : COMP319 Page 3 of 9

Each particular concrete class shall implement this interface, see Figure

[2 Mark for diagram]

We can now declare a static factory method, which will return a different class instance depending

on the input parameters.

 public interface ImageFactory {

 public static createImage(String fname) throws Exception {

if (fname.endsWith(“.gif”)) {

return((Image) new ImageGIF(fname));

 }

 if (fname.endsWith(“.png”)) {

 return((Image) new ImagePNG(fname));

 }

 if (fname.endsWith(“.jpg”)) {

 return((Image) new ImageJPG(fname));

 }

 throw new Exception("Unknown image type for file "+fname);

 }

 } [2 Marks for code example]

January 2014 The University of Liverpool

Paper Code : COMP319 Page 4 of 9

Builder (10 Marks)
The builder pattern is a creational object pattern, which translates from an abstract
formally defined structure to some rendering of this structure (commonly as a string).
One example of this would be a builder which produced SQL query strings or output of
XML or HTML. [2 Marks] In this example, different sub-classes could be used
to build different types of queries for example, SELECTS, DELETES, INSERTs etc.
[2 Marks]
The benefits of this are many:

1 The client of the builder will not have to remember the syntax of the underlying
expression [1 Mark]

2 Accidental mistakes in the output format will be eliminated. [1 Mark]
3 The builder can be adapted for different syntax formats, for example between

MySQL and MySQL.
4 Extra functionality can be added, for example to produce queries which can be

sharded across different tables or to provide a layer of database security. [2
Marks]

5 The builder can validate arguments such as table names to ensure validation
before the query is executed on the database. [1 Mark]

A2 (a) Discuss the benefits of the use of AOP, include in your answer

descriptions and explanations of: cross cutting concerns, joint points, point
cuts, advice and aspects. (20 Marks)

Cross-cut concerns are functional aspects of the code that effect most of not all the code in the

program, examples of this are logging or security concerns. [2 Marks]

Problems: Code ends up being duplicated in many places, this is called code cloning and leads

to issues with maintenance and debugging, since the same code may have be fixed many times. [2 Marks]

Scattering Since the concern is spread throughout the software, it is hard to know where it is being executed.

[2 Marks]

Tangling, the code is inter-twined with code from the main concern it is applied to and other cross

cut concerns and sometimes one cross cut concern may call another cross cut concern, for example

security with logging.[2 Marks]

Aspect orientated programming brings all the functionality of one cross cut concern together in a single

structure called an Aspect.

[2 Marks] This aspect contains the code segments that will be applied to execute the concern (this called the

advice code)

[2 Marks]. The Aspect contains a set of patterns which define where the advice code is to be inserted into the

main code, these

patterns are called pointcuts and can be defined based on the signature of a call, the accessing of data member

or other execution

events such as the throwing of an exception. [4 Marks]

The pointcuts are linked to the main code in the advice section, the advice code can be run

before or after the execution of the join points and it is also possible to skip over the target

code. [2 Marks]

One of the problems with AOP is that it can make the main code harder to test since the

structure of the actual code produced is somewhat obfuscated by the process of weaving the

advice the core code. [2 Marks]

January 2014 The University of Liverpool

Paper Code : COMP319 Page 5 of 9

(b) Look at the code segment in show in Appendix A. For this program construct
forward slices for the following statements

 pension_rate=6; (5 Marks)
float pension_rate=6;

 float pension_amount=monthly_pay*pension_rate/100;
 taxable_pay=monthly_pay-pension_amount;

if (taxable_pay>HIGH_TAX_THRESHOLD) {
 tax=HIGH_TAX_THRESHOLD*standard_rate+(monthly_pay-
HIGH_TAX_THRESHOLD)*high_tax_rate;
}

 high_tax_rate=0.40 (5 Marks)

float high_tax_rate=0.40;
tax=HIGH_TAX_THRESHOLD*standard_rate+(monthly_pay-
HIGH_TAX_THRESHOLD)*high_tax_rate;

(c) Explain the benefits of using backward and forward program slices when

developing software. (5 Marks)
 Backward slices are useful when wants to find out which statements have
 Effected the target statement, this is very useful for code debugging, we can
 construct a backward slice from the point where the data was found to be wrong

and search backwards looking for the source of the bug. (3 Marks)
 Forward slices allow the programmer to see what will be the effect of changing a

particular line of code. So if we need to maintain the code to change a line, we can
construct a slice which only contains the code that will be effected by this change.
(2 Marks)

(d) Explain how the Horowitz, Prins, & Rep algorithm is used to analyse the merging

of two separate pieces of code. (5 Marks)
 Dependency graphs are built from each of the separate pieces of code.
 [1 Mark] The two dependency graphs are then merged together using the idea of a

graph union. [1 Marks] Backward program slices of the data under inspection of
the merged code are then compared with all equivalent slices of the original code
segments, if there is a change in the slices then the change of slice will indicate

 the conflicting code statements. If the slices do not change it can be assumed
 the code has merged without issues. [3 Marks]

January 2014 The University of Liverpool

Paper Code : COMP319 Page 6 of 9

Section B

Answer 1 question in Section B. Section B is worth 30% of the marks available.

B1 Two organisations are involved in the production of software and have

been measuring their project development performance over a period of 3
years. Each organisation made an estimated timescale for each project
The results are shown in Table 1.

Organisation Year 1 Year 2 Year 3 Year 4 Year 5

Company A 45 50 45 50 80

Company B 79 98 95 96 95

Table 1 Percentage of projects completed within estimated time
schedule with all features implemented

The EQF for organisation A is 10.5 and for organisation B is 2.2

a) Discuss in detail what conclusions you can draw from this data if any
about the performance of each of these organisation in terms of success
in delivering software projects. [15 Marks]

Answer should include:
Discussion of whether failing to deliver within estimated timescale is a good measure of
performance, is this a failure to deliver or a failure to estimate.
Discussion fact that a totally unbiased estimation technique would expect to get project to
overrun estimation about 50% of the time (due to the even range of errors above and
below the estimation line).
Discussion of different EQF values for each organisation, with low EQF indicating a
possible bias which results in the organisation performing better relative to its estimation
(i.e. Company B may be systematically over-estimating the time required for each
project).

b) What technique could you use to determine what if any bias was
present in the estimation approach used by each of the companies?

[10 Marks]

January 2014 The University of Liverpool

Paper Code : COMP319 Page 7 of 9

To determine bias in the estimation one would need to get hold of the raw data from the
companies in terms of their estimations and there actual time to deliver the projects. They
would then plot the forecast/actual times for all the projects against the actual project
delivery times to get a graph. The figure below shows the typical pattern of the range of
estimation values [4 Marks]

[2 Marks for diagram]

By measuring the average deviance of the estimates positive or negative from the actual
delivered project time we can work out if there is a particular bias. [2 Marks]
If the estimation technique is totally unbiased we would expect this deviance to be very
small with the estimations above the line to cancelling out estimations below the line.
If most of the points are above the line, this indicates a f/a high bias and means the
projects are generally overestimated. [4 Marks]

January 2014 The University of Liverpool

Paper Code : COMP319 Page 8 of 9

c) What other approach could you use to try and accurately measure the
relative software productivity of these 2 companies. [5 Marks]

Another better approach to evaluate productivity would be to get an indendent
company to do size estimates of the delivered projects. This should
be done by analysing the products to look at the amount of
functionality delivered. One possible metric to use here could be
function points. Once this has been done, a productivity metric
could be produced in by looking at the staffing of the project, how
many function points were delivered and how long it took. [5
Marks]

Appendix A

float pay=12000;

float monthly_pay=pay/12;

float pension_rate=6;

float high_tax_rate=0.40;

float standard_tax_rate=0.20;

float tax=0.0;

boolean pension=true;

if (pension) {
 float pension_amount=monthly_pay*pension_rate/100;

January 2014 The University of Liverpool

Paper Code : COMP319 Page 9 of 9

 taxable_pay=monthly_pay-pension_amount;
} else {
 taxable_pay=monthly_pay;
}
if (taxable_pay>HIGH_TAX_THRESHOLD) {
 tax=HIGH_TAX_THRESHOLD*standard_rate+(monthly_pay-
HIGH_TAX_THRESHOLD)*high_tax_rate;
}

Paper Code : COMP319 Page 4 of 4

