On finite-memory determinacy of games on graphs

Patricia Bouyer LSV, CNRS, Univ. Paris-Saclay, ENS Paris-Saclay France

Based on joint work with Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, Pierre Vandenhove (Published at CONCUR'20)

The talk in one slide

Strategy synthesis for two-player games

• Find good and simple controllers for systems interacting with an antagonistic environment

« Good »?

 Performance w.r.t. objectives / payoffs / preference relations « Símple »?

- Memoryless strategies
- Finite-memory strategies

When are simple strategies sufficient to play optimally?

The setting - Example of a game

Reachability winning condition for P_1

The setting - Example of a game

Reachability winning condition for P_1

The setting - Example of a game

Reachability winning condition for P_1 The game is played using strategies: $\sigma_i: S^*S_i \to E$

Famílies of strategies

 $\sigma_i: S^*S_i \to E$

Subclasses of interest

- Memoryless strategy: $\sigma_i : S_i \to E$
- Finite-memory strategy: σ_i defined by a finite-state Mealy machine

« Reach the target with energy 0 » Loop 5 times in the initial state

« Reach the target »

« Vísít both s_1 and s_2 » Every odd vísít to s_0 , go to s_1 Every even vísít to s_0 , go to s_2

A preference relation \sqsubseteq is a total preorder on C^{ω} .

 $\pi \sqsubseteq \pi'$ and $\pi' \sqsubseteq \pi$ means that π and π' are equally appreciated $\pi \sqsubseteq \pi'$ and $\pi' \not\sqsubseteq \pi$ means that π' is preferred over π

Examples • $W \subseteq C^{\omega}$ winning condition: $\pi \sqsubseteq \pi'$ if either $\pi' \in W$ or $\pi \notin W$ • Quantitative real payoff f $\pi \sqsubseteq \pi'$ if $f(\pi) \le f(\pi')$ Ex: MP, AE, TP

Zero-sum assumption: - Preference of P_1 is \sqsubseteq - Preference of P_2 is \sqsubseteq^{-1}

Payoffs based on energy

Focus on two memoryless

strategies

• Constraint on the energy level (EL)

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)

- Constraint on the energy level (EL)
- Mean-payoff (MP): long-run average payoff per transition
- Total-payoff (TP)
- Average-energy (AE)

Optimality of strategies

$$U = 0$$
 $U = 0$ U

Remark

- To be distinguished from:
 - e-optimal
 - Subgame-perfect optimal (in our case: Nash equilibria)

A focus on memoryless strategíes

Can we characterize when they are?

YES!

And this is a beautiful result by Gimbert and Zielonka, CONCUR'05

The memoryless story

Sufficient conditions

- Sufficient conditions to guarantee memoryless optimal strategies for both player [GZ04,AR17]
- Sufficient conditions to guarantee memoryless optimal strategies for one player (« half-positional ») [Kop06,Gim07,GK14]

• Characterization of the preference relations admitting optimal memoryless strategies for both players in all finite games [GZ05]

The Gimbert-Zielonka characterization for memory less determinacy (1)

- Let \sqsubseteq be a preference relation. It is said :
- monotone whenever

The Gimbert-Zielonka characterization for memory less determinacy (2)

Characterízation - Two-player games

The two following assertions are equivalent :

 All finite games have memoryless optimal strategies for both players
 Both ⊑ and ⊑⁻¹ are monotone and selective

Characterízation - One-player games

The two following assertions are equivalent : 1. All finite P_1 -games have (uniform) memoryless optimal strategies 2. \sqsubseteq is monotone and selective

Why? Proof hint (1)

Assume all P_1 -games have optimal memoryless strategies.

Π Max

No memory required at t!

Applications

Lifting theorem

 If in all finite one-player game for player P_i, P_i has uniform memoryless optimal strategies, then both players have memoryless optimal strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Discussion

- Easy to analyse the one-player case (graph analysis)
 - Mean-payoff, average-energy [BMRLL15]
- Allows to deduce properties in the two-player case

Díscussion of examples

Examples

- Reachability, safety:
 - Monotone (though not prefix-independent)
 - Selective
- Paríty, mean-payoff:
 - Prefix-independent hence monotone
 - Selective
- Priority mean payoff [GZ05]
- Average-energy games [BMRLL15]
 Líftíng theorem!!

Discussion

Discussion

Winning condition for P_1 :

$((MP \in \mathbb{Q}) \land Büchi(A)) \lor coBüchi(B)$

- In all one-player games, P_1 has a memoryless uniform optimal strategy
- Hence: the winning condition is monotone and selective

- P_1 wins this game:
 - Infinitely often, give the hand back to P_2
 - Play for a long time the edge labelled (0,B) to approach 0
 - Play for a long time the edge labelled (1,B) to approach 1

17

• It requires infinite memory!

Winning condition for P_1 :

$((MP \in \mathbb{Q}) \land Büchi(A)) \lor coBüchi(B)$

If only \sqsubseteq is monotone and selective, P_1 might not have a memoryless optimal strategy

Fíníte-memory strategies

Objectives/preference relations become more and more complex

• $Büchi(A) \land Büchi(B)$ requires finite memory

We need memory!

Objectives/preference relations become more and more complex

- $Büchi(A) \land Büchi(B)$ requires finite memory
- $MP_1 \ge 0 \land MP_2 \ge 0$ requires infinite memory

Can we lift [GZ05] to finite memory?

A príorí no...

Consider the following winning condition for P_1 :

$$\liminf_{n} \sum_{i=1}^{n} c_i = +\infty \quad \text{or} \quad \exists^{\infty} n \text{ s.t. } \sum_{i=1}^{n} c_i = 0$$

- Optimal finite-memory strategies in one-player games
- But not in two-player games!!

How do we formalize finite memory?

Standardly

• A strategy σ_i of player P_i has finite memory if it can be encoded as a Mealy machine $(M, m_{\text{init}}, \alpha_{\text{upd}}, \alpha_{\text{next}})$ where M is finite, $m_{\text{init}} \in M$, $\alpha_{\text{upd}} : M \times S \to M$ and $\alpha_{\text{next}} : M \times S_i \to E$ $- (M, m_{\text{init}}, \alpha_{\text{upd}})$ is a memory mechanism a_{next} gives the next move s_2

To have an abstract theorem...

• The memory mechanism should not speak about information specific to particular games, hence:

- ~ α_{upd} should not speak of states
- ~ α_{upd} can speak of colors

(notion of « chromatic strategy » by Kopczynski)

Arena-independent memory management

Memory skeleton

•
$$\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$$
 with $m_{\text{init}} \in M$ and $\alpha_{\text{upd}} : M \times C \to M$

The above skeleton is sufficient for the winning condition $B\ddot{u}chi(A) \wedge B\ddot{u}chi(B)$

23

Game arena \mathscr{A} :

 $(s_1, m_1) \mapsto (s_1, s_2)$ $(s_1, m_2) \mapsto (s_1, s_1)$ $(s_2, m_1) \mapsto (s_2, s_2)$ $(s_2, m_2) \mapsto (s_2, s_1)$

• One can however not apply the [GZ05] result to product games!

Memory-dependent monotony and selectivity Let \sqsubseteq be a preference relation and \mathscr{M} a memory skeleton. It is said :

Formal definitions of \mathcal{M} -monotony and \mathcal{M} -selectivity

Definition (\mathcal{M} -monotony)

Let $\mathcal{M} = (M, m_{init}, \alpha_{upd})$ be a memory skeleton. A preference relation \sqsubseteq is \mathcal{M} -monotone if for all $m \in M$, for all $K_1, K_2 \in \mathcal{R}(C)$,

$$\exists w \in \mathcal{L}_{m_{\text{init}},m}, [wK_1] \sqsubset [wK_2] \implies \forall w' \in \mathcal{L}_{m_{\text{init}},m}, [w'K_1] \sqsubseteq [w'K_2].$$

Definition (\mathcal{M} -selectivity)

Let $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{upd}})$ be a memory skeleton. A preference relation \sqsubseteq is \mathcal{M} -selective if for all $w \in C^*$, $m = \widehat{\alpha_{\text{upd}}(m_{\text{init}}, w)}$, for all $K_1, K_2 \in \mathcal{R}(C)$ such that $K_1, K_2 \subseteq L_{m,m}$, for all $K_3 \in \mathcal{R}(C)$,

 $[w(K_1 \cup K_2)^* K_3] \sqsubseteq [wK_1^*] \cup [wK_2^*] \cup [wK_3].$

Our characterization for M-determinacy

Characterization - Two-player games

The two following assertions are equivalent : 1. All finite games have optimal \mathcal{M} -strategies for both players 2. Both \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective

Characterízatíon - One-player games

The two following assertions are equivalent : 1. All finite P_1 -games have (uniform) optimal \mathcal{M} -strategies 2. \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective

 \rightarrow We recover [GZ05] with $\mathcal{M} = \mathcal{M}_{triv}$

Applications

Transfer/Lifting theorem

• If in all finite one-player game for player P_i , P_i has optimal \mathcal{M}_i -strategies, then both players have optimal $\mathcal{M}_1 \times \mathcal{M}_2$ -strategies in all finite two-player games.

Very powerful and extremely useful in practice!

Subclasses of games

• If both \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective, then both players have optimal memoryless strategies in all \mathcal{M} -covered games.

Memory-covered arenas

If the game has enough information from \mathcal{M} , then memoryless strategies will be sufficient

Covered arenas = same propertíes as product arenas

Example of application

 $\sqsubseteq defined by a conjunction of reachability Reach() \land Reach()$

$$\mathcal{M}_{1}$$

$$C \setminus \{\bullet\} \xrightarrow{m_{1}} \xrightarrow{m_{2}} C$$

 $\sqsubseteq \text{ is } \mathcal{M}_1 \text{-monotone,}$ but not $\mathcal{M}_1 \text{-selective}$

→ Memory M_2 is sufficient for both players!!

Conclusion

A generalization of [GZ05]

- To arena-independent finite memory
- Applies to generalized reachability or parity, lower- and upperbounded (multi-dimension) energy games

Limitations

- Does only capture arena-independent finite memory
- Hard to generalize (remember counter-example)
- Does not apply to multi-dím. MP, MP+parity, energy+MP (infinite memory)

Conclusion

Other approaches

- Sufficient conditions giving half-memory management results
- Compositionality w.r.t. objectives [LPR18]

Further work

- Understand the arena-dependent framework
- Infinite arenas
- Probabilistic setting
- Other concepts (Nash equilibria)