Principles of Computer Game Design and Implementation

Lecture 10

Quiz

We already learned

- Translation
- Movement
- Rotation
- Dot product

Outline for today

- Cross product
- Explanation of first assignment

The Cross Product

- The cross product of two vectors is a vector
- Only applies in three dimensions
- The cross product is perpendicular to both vectors
- The cross product between two parallel vectors is the zero vector (0, 0, 0)

The Cross Product

- The cross product between \mathbf{V} and \mathbf{W} is

$$
\begin{gathered}
\mathbf{V}=\left(\begin{array}{ccc}
x_{v}, & y_{v}, & z_{v}
\end{array}\right) \quad \mathbf{W}=\left(\begin{array}{lll}
x_{w}, & y_{w}, & z_{w}
\end{array}\right) \\
\mathbf{V} \times \mathbf{W}=\left(\begin{array}{cc}
y_{v} z_{w}-z_{v} y_{w}, & z_{v} x_{w}-x_{v} z_{w}, \\
x_{v} y_{w}-y_{v} x_{w}
\end{array}\right)
\end{gathered}
$$

The Cross Product

- The cross product satisfies the trigonometric relationship

$$
\|\mathbf{V} \times \mathbf{W}\|=\|\mathbf{V}\|\|\mathbf{W}\| \sin \alpha
$$

- This is the area of the parallelogram formed by \mathbf{V} and \mathbf{W}

The Cross Product

- Cross products obey the right hand rule
- If first vector points along right index finger, and second vector points along middle finger,
- Then cross product points out of right thumb
- Reversing order of vectors negates the cross product:

$$
\mathbf{W} \times \mathbf{V}=-\mathbf{V} \times \mathbf{W}
$$

Uses: Face Normal

- Complex 3D models are build from polygons mostly triangles
- When determining the luminance of a triangle, we need to know the angle between the plain in which it lays and the light beam.

Example: Normal of a Triangle

- Find the unit length normal of the triangle defined by 3D points P, Q, and R

Example: Normal of a Triangle

$$
\mathbf{n}=\left(\begin{array}{ll}
R & P
\end{array}\right)\left(\begin{array}{ll}
Q & P
\end{array}\right)
$$

Example: Area of a Triangle

- Find the area of the triangle defined by 3D points P, Q, and R

Example: Area of a Triangle

$$
\text { area }=\frac{1}{2}\left|\left(\begin{array}{ll}
Q & P
\end{array}\right) \quad\left(\begin{array}{ll}
R & P
\end{array}\right)\right|
$$

Example: Alignment to Target

- An object is at position P with a unit length heading of h. We want to rotate it so that the heading is facing some target T . Find a unit axis \mathbf{A} and an angle θ to rotate around.
- T

h

Example: Alignment to Target

jME Example

```
Vector3f u = new Vector3f(x, y, z).normalize();
Arrow yArrow = new Arrow(Vector3f.UNIT_Y);
gyArrow = new Geometry("Y", yArrow);
rootNode.attachChild(gyArrow);
Vector3f axis = Vector3f.UNIT_Y.cross(u);
float angle = FastMath.acos(Vector3f.UNIT_Y.dot(u));
Quaternion q = new Quaternion();
q.fromAngleAxis(angle, axis);
gyArrow.setLocalRotation(q);
```


It Works

(I've added the AxisRods to the picture to show the reference point)

Gradual Rotation: simpleUpdate

```
float curT = t.getTimeInSeconds();
if (curT < (startT + timeoutR))
{
    float currentAngle =
        (startAngle + ((curT-startT)/
                        timeoutR)*targetAngle);
    Quaternion q = new Quaternion();
    currentAngle += tpf;
    q.fromAngleAxis(currentAngle, axisV);
    gyArrow.setLocalRotation(q);
}
```


Conclusion

- Dot and cross products are both used in 3D graphics
- Dot product is a number
- Cross product is a vector

$$
\begin{gathered}
\mathbf{V}=\left(\begin{array}{lll}
x_{v}, & y_{v}, & z_{v}
\end{array}\right) \quad \mathbf{W}=\left(\begin{array}{lll}
x_{w}, & y_{w} & z_{w}
\end{array}\right) \\
\mathbf{V} \cdot \mathbf{W}=\left(\begin{array}{l}
x_{v} x_{w}+y_{v} y_{w}+z_{v} z_{w}
\end{array}\right)
\end{gathered}
$$

$\mathbf{V} \times \mathbf{W}=\left(\begin{array}{cc}y_{v} z_{w}-z_{v} y_{w}, & z_{v} x_{w}-x_{v} z_{w}, \\ x_{v} y_{w}-y_{v} x_{w}\end{array}\right)$

