
Principles of Computer Game
Design and Implementation

Lecture 15

We already learned

• Collision Detection

– two approaches (overlap test, intersection test)

– Low-level, mid-level, and high-level view

2

Collision Response

• What happens after a collision is detected?

1. Prologue

• Check if collision should be ignored

• Sound / visual effects

2. Collision

• Resolve collision

3. Epilogue

• Propagate the effects
– destroy object(s), play sound…

3

Collision Resolution

• Animation based

– An artist models collision

• A rocket hits a target…

– Motion-capture

• Sport games

• Physics based

– Generated by an algorithm

– Based on (more or less) realistic models

4

5

Recall: Classic Game Structure

• A convexity

• Starts with a single choice, widens to many
choices, returns to a single choice

Why Physics?

• Responsive behaviour
– Infinitely many possibilities

• For centauries people were describing the
world
– We can use the equations to model the world

• Can be hard
– Knowledge of physics

– “Real” physics is too expensive computationally

6

“Motion Science” in Games

• Kinematics

– Motion of bodies without considering
forces, friction, acceleration,…

– Not realistic

• Dynamics

– Interaction with forces and torques

7

Separate translation and rotation

• Particle physics
– A sphere with a perfect smooth,

frictionless surface. No rotation

– Interaction with forces and environment
• Position, Velocity, Acceleration

• Solid body physics
– Torques, angular velocity, angular

momentum

Keep It Simple

8

Continuous Motion

• Particles move in a “smooth way”

– Position as a function of time

P(t) is the position of P in the moment t

– The derivative

describes how P(t) changes over time

• Velocity (speed)

9

V

P(t)

Discrete Particle Motion

• Uniform motion

– Nothing affects the
motion

• Gravitational pull

10

Integrators

• The process of computing the position of a
body based on forces and interaction with
other bodies in called integration

• A program that computes it is an integrator

11

1. Every body remains in a state of rest or
uniform motion unless it is acted on by an
external force

2. A body of mass m subject to force F
accelerates as described by

F = ma

3. Every action has an equal and opposite
reaction

Newton’s Laws

Vectors

12

Position and Velocity

Discrete physics

•

•

Continuous physics

•

• (maths)

Time per frameMain loop iteration

13

V

Recall: Arbitrary Translation

• Every iteration update the
position

P = P + speedtpfU(t)

• U(t) - the direction of movement
– Depends on time!!

• speed is speed

• tpf is time per frame

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

14

Velocity and Acceleration

Discrete physics

•

•

Continuous physics

•

• (maths)

Time per
frameMain loop iteration

15

Vector3f velocity = new Vector3f(10,10,0);

Vector3f gravity = new Vector3f(0, -9.8f, 0);

…

public void simpleUpdate() {

velocity = velocity.add(gravity(tpf));

ag.move(velocity.mult(tpf));

}

Example: Gravitational Pull

• = 9.8 N/kg

•

•

16

Acceleration and Force

Newton’s second law: a body of mass m subject
to force F accelerates as described by

F(t) = ma(t)

a(t) = F(t)/m

Linear drag FD(t) = -bV(t)

Example: Engine thrust Fengine = kUV

Quadratic drag FQD(t) = -c|V(t)|2V (t)

Use more
often for
simplicity

17

Example: Pull + Drag

Vector3f force = velocityB.mult(-b);

accelerationB = gravity.add(force.divide(m));

velocityB =

velocityB.add(accelerationB.mult(tpf));

bg.move(velocityB.mult(tpf));

g
FD

V

18

Example: Pull + Drag + Thrust

Vector3f directionC = velocityC.normalize();

Vector3f forceC = velocityC.mult(-b).

add(directionC.mult(thrust));

accelerationC = gravity.add(forceC.divide(m));

velocityC = velocityC.add(accelerationC.mult(tpf));

cg.move(velocityC.mult(tpf));

g
FD

V

19

thrust

Unit vector in the direction of V

Simulation Recipe

• Add up all the forces acting on the object

– Gravity, drag, thrust, spring pull,…

• Represent the motion as discrete steps

20

Euler steps

Rotation

• Rotation of a uniform (again simplification)
solid body can be described mathematically

– Speed vs angular speed

– Force vs torque

• Represent as discrete motion

• Use Euler steps to compute the rotation
matrix

• Combine with translation

21

Hard but doable

Accuracy of Simulation

• How accurate this simulation is?

• Does it matter?

– It’s all about illusion, if the behaviour looks right,
we do not care.

• But…

22

