Principles of Computer Game Design and Implementation

Lecture 15

We already learned

- Collision Detection
- two approaches (overlap test, intersection test)
- Low-level, mid-level, and high-level view

Collision Response

- What happens after a collision is detected?

1. Prologue

- Check if collision should be ignored
- Sound / visual effects

2. Collision

- Resolve collision

3. Epilogue

- Propagate the effects
- destroy object(s), play sound...

Collision Resolution

- Animation based
- An artist models collision
- A rocket hits a target...
- Motion-capture

- Sport games
- Physics based
- Generated by an algorithm
- Based on (more or less) realistic models

$\mathbf{a}_{.}-\Delta \mathbf{v} / \Delta t$	F..- ma	p-mv
$\mathbf{v}=\mathbf{v}+\mathbf{a t}$	$\mathrm{F}=\mathrm{GMm} / \mathrm{r}$	$\mathrm{W}=\mathrm{F} \cdot \Delta \mathrm{s}$
$\Delta s=v_{\text {d }}$ ti at	$\mathrm{F}-\mathrm{mv} / \mathrm{r}$	$\mathrm{P}_{\text {.. }}=\Delta \mathrm{W} / \Delta$
$V=1 \mathrm{R}$	F, -kq q/ $/ \mathrm{r}$	$\mathrm{K}=$ - $\mathrm{mv}^{\text {' }}$
$\mathrm{P}=\mathrm{VI}$	$\mathrm{F}=\mathrm{q} \mathbf{v} \times \mathrm{B}$	U,-mgh
$\mathrm{R}=\mathrm{ER}$	$\tau-\mathrm{r} \times \mathrm{F}$	$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
1/R, $-21 / \mathrm{R}$	$\mathrm{n}=\mathrm{c} / \mathrm{v}$	$v-\lambda \mathrm{f}$
$\varepsilon_{-N}=-N \frac{\Delta \Phi}{\Delta t}$	$n \sin \theta=\mathrm{n} \sin \theta$,	
$\Delta x=\Delta x / y$	$\mathrm{E}=\mathrm{mc}$	$\Delta t-\Delta t y$

Recall: Classic Game Structure

- A convexity
- Starts with a single choice, widens to many choices, returns to a single choice

Why Physics?

- Responsive behaviour
- Infinitely many possibilities
- For centauries people were describing the world
- We can use the equations to model the world
- Can be hard
- Knowledge of physics
- "Real" physics is too expensive computationally

"Motion Science" in Games

- Kinematics
- Motion of bodies without considering forces, friction, acceleration,...
- Not realistic
- Dynamics
- Interaction with forces and torques

Keep It Simple

Separate translation and rotation

- Particle physics
- A sphere with a perfect smooth, frictionless surface. No rotation
- Interaction with forces and environment
- Position, Velocity, Acceleration
- Solid body physics
- Torques, angular velocity, angular momentum

Continuous Motion

- Particles move in a "smooth way"
- Position as a function of time $\boldsymbol{P}(\mathrm{t})$ is the position of P in the moment t
- The derivative

$$
\frac{d \mathbf{P}(t)}{d t}
$$

describes how $\boldsymbol{P}(\mathrm{t})$ changes over time

- Velocity (speed)

Discrete Particle Motion

- Uniform motion
- Nothing affects the motion
- Gravitational pull

Integrators

- The process of computing the position of a body based on forces and interaction with other bodies in called integration
- A program that computes it is an integrator

Newton's Laws

1. Every body remains in a state of rest or uniform motion unless it is acted on by an external force
2. A body of mass m subject to force F accelerates as described by vectors

$$
F=\overleftarrow{m a}
$$

3. Every action has an equal and opposite reaction

Position and Velocity

Continuous physics

- $\mathbf{V}(t)=\frac{d \mathbf{P}(t)}{d t}$
- $\mathbf{P}(t)=\ldots$ (maths)

Discrete physics

- $\mathbf{V}(t)=\frac{\Delta \mathbf{P}(t)}{\Delta t}=\frac{\mathbf{P}_{i+1}-\mathbf{P}_{i}}{t p f}$
- $\mathbf{P}_{i+1}=\mathbf{P}_{i}+t p f \cdot \mathbf{V}(t)$

Main loop iteration
Time per frame

Recall: Arbitrary Translation

Velocity and Acceleration

Continuous physics

- $\mathbf{a}(t)=\frac{d \mathbf{V}(t)}{d t}$

$$
\mathbf{a}(t)=\frac{d \mathbf{V}(t)}{d t}
$$

$$
\nabla
$$

- $\mathbf{V}(t)=\ldots($ maths $) \quad \bullet \quad \mathbf{V}_{i+1}=\mathbf{V}_{i}+t p f \cdot \mathbf{a}(t)$

Discrete physics

- $\mathbf{a}(t)=\frac{\Delta \mathbf{V}(t)}{\Delta t}=\frac{\mathbf{V}_{i+1}-\mathbf{V}_{i}}{t p f}$

Time per frame

Example: Gravitational Pull

- $\mathbf{a}(t)=\mathbf{g}=9.8 \mathrm{~N} / \mathrm{kg}$
- $\mathbf{V}_{i+1}=\mathbf{V}_{i}+t p f \cdot \mathbf{g}$
- $\mathbf{P}_{i+1}=\mathbf{P}_{i}+t p f \cdot \mathbf{V}_{i+1}$


```
Vector3f velocity = new Vector3f(10,10,0);
Vector3f gravity = new Vector3f(0, -9.8f, 0);
```

public void simpleUpdate() \{
velocity = velocity.add(gravity(tpf));
ag.move(velocity.mult(tpf));
\}

Acceleration and Force

Newton's second law: a body of mass m subject to force F accelerates as described by

$$
\begin{gathered}
\boldsymbol{F}(\mathrm{t})=m \boldsymbol{a}(\mathrm{t}) \\
\nabla \\
\boldsymbol{a}(\mathrm{t})=\boldsymbol{F}(\mathrm{t}) / m
\end{gathered}
$$

Use more often for
Example: Engine thrust $\boldsymbol{F}_{\text {engine }}=\boldsymbol{k} \boldsymbol{U}_{\boldsymbol{v}}$ simplicity

Linear drag $\quad \boldsymbol{F}_{\mathrm{D}}(\mathrm{t})=-b \boldsymbol{V}(\mathrm{t})$
Quadratic drag $\boldsymbol{F}_{\mathrm{QD}}(\mathrm{t})=-\mathrm{c}|\boldsymbol{V}(\mathrm{t})|^{2} \boldsymbol{V}(\mathrm{t})$

Example: Pull + Drag

$$
\begin{aligned}
\mathbf{F}_{i+1} & =-b \mathbf{V}_{i} \\
\mathbf{a}_{i+1} & =\mathbf{g}+\mathbf{F}_{i+1} / m \\
\mathbf{V}_{i+1} & =\mathbf{V}_{i}+t p f \cdot \mathbf{a}_{i+1} \quad \mathbf{F}_{\mathrm{o}} \\
\mathbf{P}_{i+1} & =\mathbf{P}_{i}+\operatorname{tpf} \cdot \mathbf{V}_{i+1}
\end{aligned}
$$

Vector3f force = velocityB.mult(-b); accelerationB = gravity.add(force.divide(m)); velocityB =
velocityB.add(accelerationB.mult(tpf)); bg.move(velocityB.mult(tpf));

Example: Pull + Drag + Thrust

$$
\begin{aligned}
\mathbf{F}_{i+1} & =-b \mathbf{V}_{i}+k \mathbf{U} \\
\mathbf{a}_{\mathbf{V}} & =\mathbf{g}+\mathbf{F}_{i+1} / m \\
\mathbf{V}_{i+1} & =\mathbf{V}_{i}+t p f \cdot \mathbf{a}_{i+1} \\
\mathbf{P}_{i+1} & =\mathbf{P}_{i}+t p f \cdot \mathbf{V}_{i+1}
\end{aligned}
$$

Vector3f directionC = velocityC.normalize();
Vector3f forceC = velocityc.mult(-b). add(directionC.mult(thrust));
accelerationC $=$ gravity.add(forceC.divide (m)); velocityC = velocityc.add(accelerationC.mult(tpf)); cg.move(velocityc.mult(tpf));

Simulation Recipe

- Add up all the forces acting on the object - Gravity, drag, thrust, spring pull,...
- Represent the motion as discrete steps

$$
\left.\begin{array}{rl}
\mathbf{a}_{i+1} & =\mathbf{g}+\mathbf{F}_{i+1} / m \\
\mathbf{V}_{i+1} & =\mathbf{V}_{i}+t p f \cdot \mathbf{a}_{i+1} \\
\mathbf{P}_{i+1} & =\mathbf{P}_{i}+t p f \cdot \mathbf{V}_{i+1}
\end{array}\right\}_{\text {Euler steps }}
$$

Rotation

- Rotation of a uniform (again simplification) solid body can be described mathematically
- Speed vs angular speed
- Force vs torque
- Represent as discrete motion
- Use Euler steps to compute the rotation matrix
- Combine with translation

Accuracy of Simulation

- How accurate this simulation is?
- Does it matter?
- It's all about illusion, if the behaviour looks right, we do not care.
- But...

