Principles of Computer Game
Design and Implementation

Lecture 15

We already learned

e Collision Detection
— two approaches (overlap test, intersection test)
— Low-level, mid-level, and high-level view

Collision Response

 What happens after a collision is detected?

1. Prologue
* Check if collision should be ignored
e Sound / visual effects

2. Collision
e Resolve collision
3. Epilogue

* Propagate the effects
— destroy object(s), play sound...

Collision Resolution

e Animation based

— An artist models collision
* Arocket hits a target...

— Motion-capture

* Sport games

Physics based Gl
— Generated by an algorithm ,Y'Jf il e

— Based on (more or less) realistic models " =

sinf) b dal
' f d d

AX=AX Y E=mc =AY

Recall: Classic Game Structure

* A convexity

e Starts with a single choice, widens to many
choices, returns to a single choice

Why Physics?

* Responsive behaviour
— Infinitely many possibilities

* For centauries people were describing the
world
— We can use the equations to model the world

 Can be hard

— Knowledge of physics
— “Real” physics is too expensive computationally

“Motion Science” in Games

e Kinematics

— Motion of bodies without considering
forces, friction, acceleration,...

— Not realistic

* Dynamics

— Interaction with forces and torques

Keep It Simple

Separate translation and rotation
* Particle physics
— A sphere with a perfect smooth,
frictionless surface. No rotation
— Interaction with forces and environment
* Position, Velocity, Acceleration
* Solid body physics s>

— Torques, angular velocity, angular
momentum

Continuous Motion

* Particles move in a “smooth way”
— Position as a function of time
P(t) is the position of P in the moment t
— The derivative

dP(t)
dt

describes how P(t) changes over time

* Velocity (speed)

Discrete Particle Motion

e Uniform motion
— Nothing affects the

motion

* Gravitational pull @&%

10

Integrators

* The process of computing the position of a
body based on forces and interaction with
other bodies in called integration

* A program that computes it is an integrator

Newton’s Laws

1. Every body remains in a state of rest or
uniform motion unless it is acted on by an
external force

2. A body of mass m subject to force F

accelerates as descr{% Vectors

F=ma

3. Every action has an equal and opposite
reaction

Position and Velocity

Continuous physics Discrete physics
o _ dP(1) o _ AP(t) P, -P;
V= VIO ==x =
- i
* P(t) =...(maths) <+ P,.1 =P; + tpf- V(¢)
-~ /

Main loop iteration

Time per frame

TN

13

Recall: Arbitrary Translation @

Every iteration update the
position

P = P + speed-tpf-U(t)

U(t) - the direction of movement
— Depends on time!!

speed is speed
tpf is time per frame

=

Velocity and Acceleration

Continuous physics Discrete physics
. _dV(?) . _AV() Vi1 -V,
alt) = =5 A=A T
- i

* V(t)=...(maths) Vi =V,+ipfa(t)

/ Time per

Main loop iteration frame

15

Example: Gravitational Pull

- a(t) = g =9.8N/kg
*V,s1=V,;+tpf-g g@%
« Pii1 =P, +ipf-Vip

Vector3f velocity = new Vector3f(10,10,0);
Vector3f gravity = new Vector3f (0, -9.8f, 0);

public voild simpleUpdate () {
velocity = velocity.add(gravity (tpf))
ag.move (velocity.mult (tpf));

Acceleration and Force

Newton’s second law: a body of mass m subject
to force F accelerates as described by

F(t) = ma(t)
-
a(t) = F(t)/m

Use more
often for

Example: Engine thrust F, ;. = kUv/ simplicity
Linear drag F(t) = -bV(t)

Quadratic drag Fqp(t) =-c| V(t)|?V (t)

Example: Pull + Drag
F, ., = -bV,

a1 =g+ Fip1/m v
Vipr=Vi+ipf-aizn /?/ m
-

P,.1 =P, +1tpf- Vi1

Vector3f force = velocityB.mult (-b);
accelerationB = gravity.add(force.divide (m)) ;
velocityB =

velocityB.add (accelerationB.mult (tpf));
bg.move (velocityB.mult (tpf));

Example: Pull + Drag + Thrust

«— Unit vectorin the direction of V

Fii1 = bV, + kUY

"4
a1 =g+F,11/m
thrust
Vi1 =V, +ipf-a;4q Fo < g
P11 =P, +1ipf- Vin
Vector3f directionC = velocityC.normalize ()

Vector3f forceC = velocityC.mult (-b).

add (directionC.mult (thrust));
accelerationC = gravity.add(forceC.divide (m)) ;
velocityC = velocityC.add (accelerationC.mult (tpf));
cg.move (velocityC.mult (tpf));

Simulation Recipe

* Add up all the forces acting on the object

— Gravity, drag, thrust, spring pull,...

* Represent the motion as discrete steps

a1 =g+ F; i 1/m
Vo1 =V,;+tpf -a;11

P, 1=DP;

d

tpf- Vig1 |

Euler steps

Rotation

Rotation of a uniform (again simplification)
solid body can be described mathematically

Use Euler steps to compute the rotation
matrix

— Speed vs angular speed
— Force vs torque

Represent as discrete motion

Combine with translation

Hard but doable

Accuracy of Simulation

e How accurate this simulation is?

e Does it matter?

— It’s all about illusion, if the behaviour looks right,
we do not care.

 But...

