
Principles of Computer Game
Design and Implementation

Lecture 25

We already learned

• Decision trees

• Finite state machines

• Behaviour trees

2

Outline for today

• planning

3

Combining Actions

• In previous lectures, behaviour of game
entities was defined by the AI developer

• Behaviour trees can be seen as reactive plans

– React to changes in the environment

– Options are prescribed

• In traditional AI, computer is asked to find
sequences of actions

4

AI Planning

• Planning in AI is the problem of finding a
sequence of primitive actions to achieve some
goal.

• The sequence of actions is the system’s plan
which then can be executed.

• Planning requires the following:

– representation of goal to achieve;

– knowledge about what actions can be performed; and

– knowledge about state of the world.

5

Architecture of a Planner

6

Planning in Games

• A character may have one or more goal
(motives)

• Every goal has insistence – a number

• Actions fulfil goals (to some extent)

• Actions can be combined into a PLAN

7

GOB vs GOAP

• Goal-oriented behaviour (GOB)

• Main problem: selecting an action

– Restricts design decisions

• Goal-oriented action planning (GOAP)

• Main problem: finding a sequence of actions

– Often considered to be too complicated for
games

• But F.E.A.R. !

8

GOB: Simple Selection

9

• Choose the most
pressing goal;

• Find an action that
most fulfils it

Works reasonably well when actions do not have side effects

• Goals:

– Eat = 4; Sleep = 3

• Actions:

– Get-Raw-Food (Eat - 3)

– Get-Snack (Eat – 2)

– Sleep-in-Bed (Sleep – 4)

– Sleep-on-Sofa (Sleep – 2)

• Goals:

– Eat = 4; Bathroom = 3

• Actions:

– Drink-Soda (Eat – 2; Bathroom + 3)

– Visit-Bathroom (Bathroom – 4)

GOB: Overall Utility

10

Discontentment = insistence
goals

D = 8 D = 4

Soda Bathroom

D = 7

Works well when actions dependency is limited

• Goals:

– Eat = 4 + 4 per hour;

– Bathroom = 3 + 2 per hour

• Actions:

– Drink-Soda (Eat – 2; Bathroom + 3; 15 min)

– Visit-Bathroom (Bathroom – 4; 15 min)

– Cook-meal (Eat – 5; 2h)

Overall Utility: Discontentment + Timing

11

Discontentment = insistence
goals

D = 9.5 D = 4.5

Soda

Bathroom

D = 7

Works well when actions dependency is limited

D = 14

Meal

Actions Available

• Actions defined centrally are too inflexible
• Smart object insert actions into AI entities

– Oven offers a cook action
– Meat offers an eat action

• But how to locate such objects?

• “Smelly GOB”
– Actions smell with the goal it achieves

• cook smells of Eat

– Smells spread
– Agents follow smell towards greatest concentration

12

• Goals:

– Heal = 4; Kill-Ogre = 3

• Actions:

– Fireball (Kill-Ogre – 2); 3 Energy slots

– Lesser-Healing (Heal – 2); 2 Energy slots

– Greater-Healing (Heal – 4); 3 Energy slots

Where GOB Fails

13

Does not work due to one action prohibiting another!

Energy level = 5

Planning in Games

• AI Behaviour
– FSM used in F.E.A.R.

14

Goto Animate

Use

Smart

Object

But goto where???

Use what???

F.E.A.R. uses
planning to
answer these
questions

Jeff Orkin. GDC’06 “Three States and a Plan: The A.I. of F.E.A.R.”

Planning in F.E.A.R.

Design principle:

– Create interesting
spaces for combat and
let the AI act

15Jeff Orkin. GDC’06 “Three States and a Plan: The A.I. of F.E.A.R.”

AI Agents:
• Dodge
• Take cover
• …

• Dodge roll
• Ambush

STRIPS Planning Language

• STanford Research Institute Problems Solver

• Uses predicate logic language to represent

– state of environment;

– goal to be achieved;

– actions available to agents.

16

Example: Monkey, Box and Banana

• fdfdsa

17

A monkey is at the door into a room. A banana hangs from the ceiling in
the middle of the room. The monkey wants the banana, but is not tall
enough to get it. There is a box at the window which the monkey can
climb on to get at the banana.

First-Order Predicates

• States can be described using:

– MonkeyAt(x) Monkey is at location x

– BoxAt(x) Box is at location x

– BananaAt(x) Banana is at location x

– StandsOn(x) Monkey stands on x

– hasBanana True if Monkey has Banana

18

0-ary predicate
(proposition)

State Description

• State is a conjunction of ground and function-
free atoms

• MonkeyAt(middle) ∧ BoxAt(window) ∧
BananaAt(middle) ∧ StandsOn(floor)

19door windowmiddle

Closed world assumption:
¬hasBanana
¬MonkeyAt(window), …

not stated – not true

Initial State

• State in which planning starts

• MonkeyAt(door) ∧ BoxAt(window) ∧
BananaAt(middle) ∧ StandsOn(floor)

20door windowmiddle

Goal State

• Goal is a particular state:
hasBanana

• A state S satisfies goal G if S contains all atoms
from G (and possibly more)

hasBanana ∧MonkeyAt(door)
hasBanana ∧MonkeyAt(middle) ∧ BoxAt(middle)
hasBanana ∧MonkeyAt(middle) ∧StandsOn(box)

• All satisfy the goal

21

Actions

• Each action has

– a name: which may have arguments;

– a pre-condition list: list of facts which must be true
for action to be executed;

– a delete list: list of facts that are no longer true
after action is performed;

– an add list: list of facts made true by executing the
action.

• Each of these may contain variables.

22

Example: Walk

• Walk(x,y):

– pre: MonkeyAt(x)

– del: MonkeyAt(x)

– add: MonkeyAt(y)

• Action instantiation:
– x = door

– y = window

23

door windowmiddle

x y

Walk(door,window)

Example: Other Actions

• ClimbUp(x)

– pre: MonkeyAt(x), BoxAt(x), BananaAt(x),
StandsOn(floor)

– del: StandsOn(floor)

– add: StandsOn(box)

• MoveBox(x, y)

– pre: MonkeyAt(x), BoxAt(x)

– del: MonkeyAt(x), BoxAt(x)

– add: MonkeyAt(y), BoxAt(y)

• TakeBanana(x)

– pre: MonkeyAt(x), BoxAt(x), BananaAt(x),
StandsOn(box)

– del: -

– add: hasBanana

24Instead of ∧

Action Effect

• The result of executing action A in state S is a state S’
such that

• S’ is identical to S except

– Any atom from the add list of A is added to S’

– Any atom from the delete list of A is deleted from S’

– All other atoms do not change their value!

25

Frame condition

STRIPS Plan

• A sequence (list) of actions with variables
replaced with values

– Move(door,window)

– MoveBox(window, middle)

– ClimbUp(middle)

– TakeBanana(middles)

26

door windowmiddle

Planning Algorithm

• There are numerous
approaches to planning

– Progressive/regressive
planning

– Partial planning

– Graphplan

– Reduction to sat

– …

• There is a planner competition

27

Planning in F.E.A.R. (1)

• States represented as arrays

– One value per predicate

[door, window, middle, floor, false]

28door windowmiddle

MonkeyAt
enum

BoxAt
enum

BananaAt
enum

StandsOn
enum

hasBanana
Boolean

Goal:

[_, _, _, _, true]

Planning in F.E.A.R. (2)

• Procedural pre, add and del

• E.g.
– Walk(x,y):

if (state[0]== x) {

state[0] = y;

}

29

[door, window, middle, floor, false]

Planning in F.E.A.R. (3)

• Assign costs to actions

– Walk costs 1

– MoveBox costs 2

– ClimbUp costs 0.5

– TakeBanana costs 0.1

• Use A* search algorithm to find a plan

– Heuristic needed

30

Example

31

door windowmiddle

x
0 1-1

Heuristic:
monkey-middle distance +
box-middle distance

[d, w, m, f, F]

[m, w, m, f, F]

Walk(door,middle)

[w, w, m, f, F]

(1)+(0+1) = 2 1+(1+1) = 3

Walk(middle,window)

[m, w, m, f, F]

(1+1)+(1+1)=4
[w, w, m, b, F]

✗

Walk(window,middle)

MoveBox(window,door)

[m, w, m, f, F]

[m, m, m, f, F]

[d, d, m, f, F]

(1+1)+(0+1)=3

(1+2)+(0+0)=3

(1+2)+(1+1)=5
[m, m, m, b, F]

(1+2+0.5)+(0+0)=3.5

[m, m, m, b, T]

Walk(door,window)

ClimbUp(window)

MoveBox(window,middle)

Climb(middle)

TakeBanana

[d, w, m, f, F]

(1+1+1)+(1+1)=5

Walk(middle,door)

Planning in Games

• Quite an effort even with A*

• Most time spent on pathfinding
– Where to go rather than what goal to pursue

• Will address the pathfinding problem next

• Hierarchical plans:
– In order to carry out a higher-level plan, the

planner must first refine the plan in order to
produce a complete plan in terms of ground-level
operations.

32

Hierarchical Task Network (HTN)

• use abstract operators to incrementally
decompose a planning problem from a high-
level goal statement to a primitive plan
network

• Primitive operators represent actions that are
executable, and can appear in the final plan

• Non-primitive operators represent goals
(equivalently, abstract actions) that require
further decomposition to be executed

33

HTN operator: Example

OPERATOR decompose

PURPOSE: Construction

CONSTRAINTS:

Length (Frame) <= Length (Foundation),

Strength (Foundation) > Wt(Frame) + Wt(Roof)

+ Wt(Walls) + Wt(Interior) + Wt(Contents)

PLOT: Build (Foundation)

Build (Frame)

PARALLEL

Build (Roof)

Build (Walls)

END PARALLEL

Build (Interior)

34

HTN planning: Example

35

Some Games Using GOAP
Architectures

• F.E.A.R. 2005
• Condemned: Criminal Origins 2005
• S.T.A.L.K.E.R.: Shadow of Chernobyl 2007
• Ghostbusters 2008
• Silent Hill: Homecoming 2008
• Fallout 3 2008
• Empire: Total War 2009
• F.E.A.R. 2: Project Origin 2009
• Demigod, 2009
• Just Cause 2 2010
• Transformers: War for Cybertron 2010

36

http://web.media.mit.edu/~jorkin/goap.html

http://web.media.mit.edu/~jorkin/goap.html

