Principles of Computer Game Design and Implementation

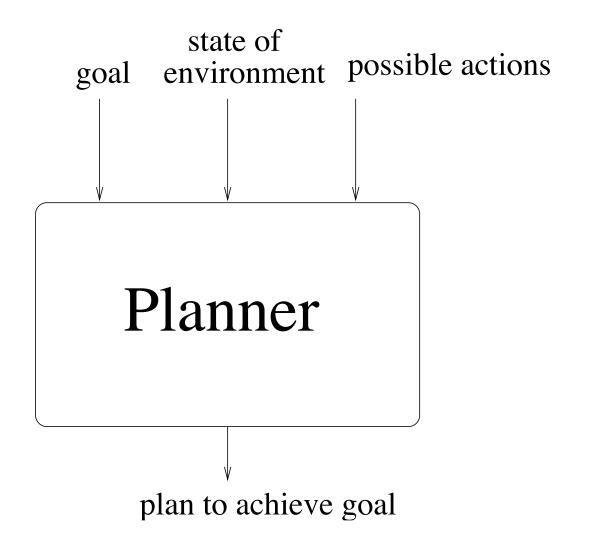
Lecture 25

We already learned

- Decision trees
- Finite state machines
- Behaviour trees

Outline for today

planning


Combining Actions

- In previous lectures, behaviour of game entities was defined by the AI developer
- Behaviour trees can be seen as reactive plans
 - React to changes in the environment
 - Options are prescribed
- In traditional AI, computer is asked to *find* sequences of actions

Al Planning

- Planning in AI is the problem of finding a sequence of primitive actions to achieve some goal.
- The sequence of actions is the system's plan which then can be executed.
- Planning requires the following:
 - representation of goal to achieve;
 - knowledge about what actions can be performed; and
 - knowledge about state of the world.

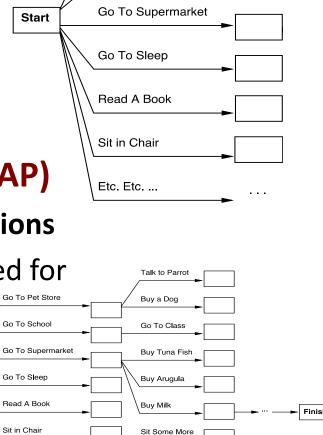
Architecture of a Planner

Planning in Games

- A character may have one or more goal (motives)
- Every goal has insistence a number
- Actions fulfil goals (to some extent)

Actions can be combined into a PLAN

GOB vs GOAP


- Goal-oriented behaviour (GOB)
- Main problem: selecting an action
 - Restricts design decisions

- Goal-oriented action planning (GOAP)
- Main problem: finding a sequence of actions
 - Often considered to be too complicated for games

Start

Etc. Etc. ...

But F.E.A.R. !

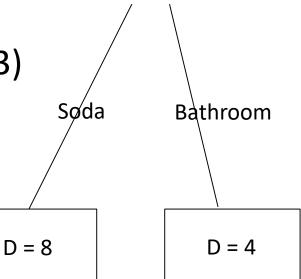
Read A Book

Go To Pet Store

Go To School

GOB: Simple Selection

- Goals:
 - -Eat = 4) Sleep = 3
- Actions:
 - —Get-Raw-Food (Eat 3)
 - Get-Snack (Eat 2)
 - Sleep-in-Bed (Sleep 4)
 - Sleep-on-Sofa (Sleep 2)


- Choose the most pressing goal;
- Find an action that most fulfils it

Works reasonably well when actions do not have side effects

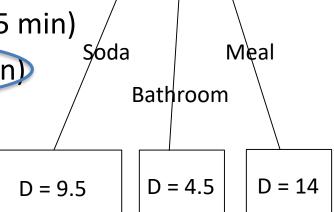
GOB: Overall Utility

Discontentment =
$$\sum_{goals}$$
 insistence

- Eat = 4; Bathroom = 3
- Actions:
 - Drink-Soda (Eat 2; Bathroom + 3)
 - Visit-Bathroom (Bathroom 4)

D = 7

Works well when actions dependency is limited


Overall Utility: Discontentment + Timing

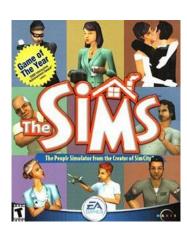
Goals:

- Discontentment = \sum_{goals} insistence
- Eat = 4 + 4 per hour;
- Bathroom = 3 + 2 per hour

Actions:

- Drink-Soda (Eat 2; Bathroom + 3; 15 min)
- Visit-Bathroom (Bathroom 4; 15 min)
- Cook-meal (Eat 5; 2h)

D = 7


Works well when actions dependency is limited

Actions Available

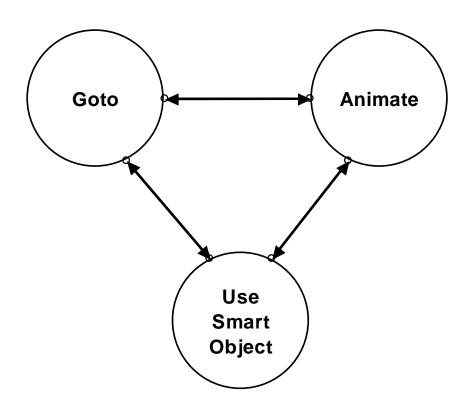
- Actions defined centrally are too inflexible
- Smart object insert actions into Al entities
 - Oven offers a cook action
 - Meat offers an eat action
 - But how to locate such objects?

"Smelly GOB"

- Actions smell with the goal it achieves
 - cook smells of Eat
- Smells spread
- Agents follow smell towards greatest concentration

Where GOB Fails

Goals:


Energy level = 5

- Heal = 4; Kill-Ogre = 3
- Actions:
 - Fireball (Kill-Ogre 2);3 Energy slots
 - Lesser-Healing (Heal 2);2 Energy slots
 - Greater-Healing (Heal 4);
 3 Energy slots

Does not work due to one action prohibiting another!

Planning in Games

- Al Behaviour
 - FSM used in F.E.A.R.

But goto where???
Use what???

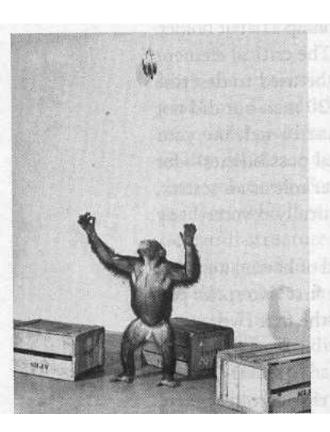
F.E.A.R. uses planning to answer these questions

Planning in F.E.A.R.

Design principle:

 Create interesting spaces for combat and let the AI act

Al Agents:


- Dodge
- Take cover
- •

- Dodge roll
- Ambush

STRIPS Planning Language

- STanford Research Institute Problems Solver
- Uses predicate logic language to represent
 - state of environment;
 - goal to be achieved;
 - actions available to agents.

Example: Monkey, Box and Banana

A monkey is at the door into a room. A banana hangs from the ceiling in the middle of the room. The monkey wants the banana, but is not tall enough to get it. There is a box at the window which the monkey can climb on to get at the banana.

17

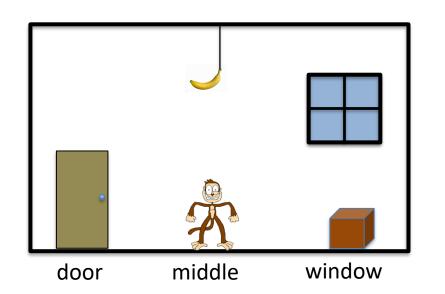
First-Order Predicates

States can be described using:

– MonkeyAt(x)Monkey is at location x

- BoxAt(x) Box is at location x

BananaAt(x)Banana is at location x


StandsOn(x)Monkey stands on x

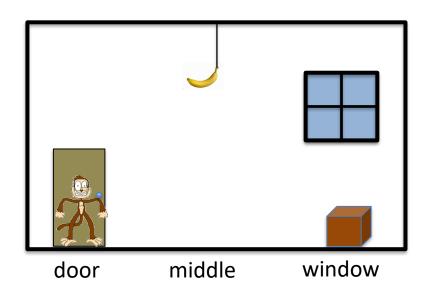
- hasBanana
True if Monkey has Banana

O-ary predicate (proposition)

State Description

- State is a conjunction of ground and functionfree atoms
- MonkeyAt(middle) ∧ BoxAt(window) ∧
 BananaAt(middle) ∧ StandsOn(floor)

Closed world assumption:


-hasBanana

-MonkeyAt(window), ...

not stated – not true

Initial State

- State in which planning starts
- MonkeyAt(door) ∧ BoxAt(window) ∧
 BananaAt(middle) ∧ StandsOn(floor)

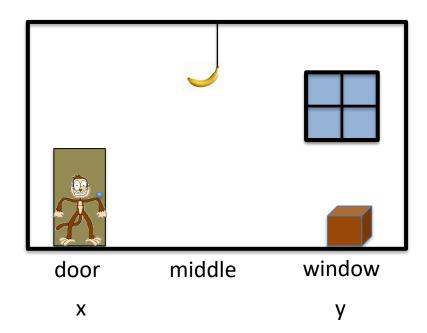
Goal State

Goal is a particular state:

hasBanana

 A state S satisfies goal G if S contains all atoms from G (and possibly more)

hasBanana ∧ MonkeyAt(door)
hasBanana ∧ MonkeyAt(middle) ∧ BoxAt(middle)
hasBanana ∧ MonkeyAt(middle) ∧ StandsOn(box)


All satisfy the goal

Actions

- Each action has
 - a name: which may have arguments;
 - a pre-condition list: list of facts which must be true for action to be executed;
 - a delete list: list of facts that are no longer true after action is performed;
 - an add list: list of facts made true by executing the action.
- Each of these may contain variables.

Example: Walk

- Walk(x,y):
 - -pre: MonkeyAt(x)
 - del: MonkeyAt(x)
 - -add: MonkeyAt (y)

- Action instantiation: Walk (door, window)
 - x = door
 - y = window

Example: Other Actions

```
ClimbUp(x)
  - pre: MonkeyAt(x), BoxAt(x), BananaAt(x),
                                   StandsOn(floor)
  - del: StandsOn(floor)
  - add: StandsOn(box)
MoveBox(x, y)
  - pre: MonkeyAt(x), BoxAt(x)
  - del: MonkeyAt(x), BoxAt(x)
  - add: MonkeyAt(y), BoxAt(y)

    TakeBanana(x)

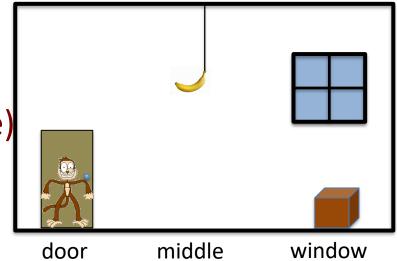
  - pre: MonkeyAt(x) BoxAt(x) BananaAt(x),
                                   StandsOn (box)
  - del:
  - add: hasBanana
```

Action Effect

- The result of executing action A in state S is a state S' such that
- S' is identical to S except
 - Any atom from the add list of A is added to S'
 - Any atom from the delete list of A is deleted from S'
 - All other atoms do not change their value!

Frame condition

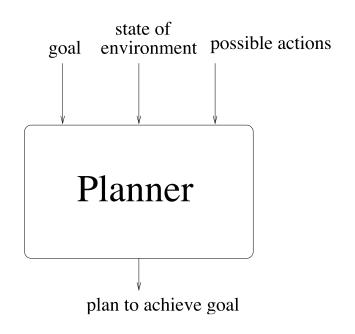
STRIPS Plan

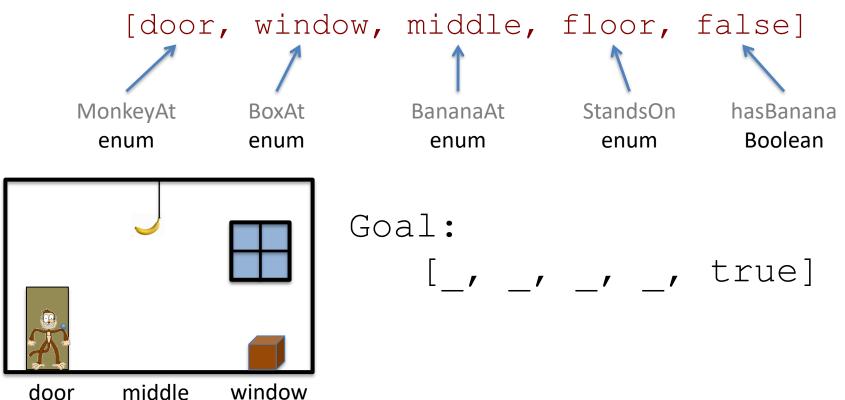

A sequence (list) of actions with variables replaced with values

– Move(door, window)

MoveBox(window, middle)

- ClimbUp(middle)


– TakeBanana(middles)


Planning Algorithm

- There are numerous approaches to planning
 - Progressive/regressiveplanning
 - Partial planning
 - Graphplan
 - Reduction to sat
 - **–** ...
 - There is a planner competition

Planning in F.E.A.R. (1)

- States represented as arrays
 - One value per predicate

Planning in F.E.A.R. (2)

• Procedural pre, add and del

```
• E.g.

- Walk(x, y):

if (state[0] == x) {
    state[0] = y;
}
```

Planning in F.E.A.R. (3)

Assign costs to actions

- Walk costs 1

MoveBoxcosts 2

- ClimbUp costs 0.5

TakeBanana costs 0.1

- Use A* search algorithm to find a plan
 - Heuristic needed

[d, w, m, f, F]

Walk(door, middle)

talk(door,window)

Example

$$[m, w, m, f, F]$$

 $(1)+(0+1)=2$

Walk(middle,window)

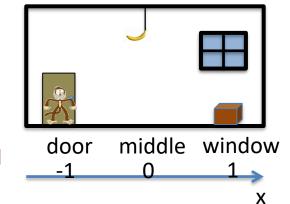
Walk(window,middle)

Walk(middle,door)

[m, m, m, b, F]

(1+2+0.5)+(0+0)=3.5

TakeBanana


[m, m, m, f, **F**]

(1+2)+(0+0)=3

$$[w, w, m, f, F]$$

1+(1+1) = 3

climbUp(window)

MoveBox(window,door)

Heuristic:

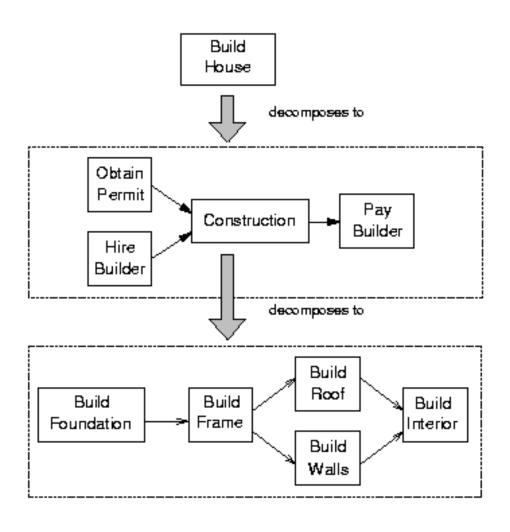
monkey-middle distance + box-middle distance

MoyeBox(window,middle)

[m, m, m, b, T]

Planning in Games

- Quite an effort even with A*
- Most time spent on pathfinding
 - Where to go rather than what goal to pursue
 - Will address the pathfinding problem next
- Hierarchical plans:
 - In order to carry out a higher-level plan, the planner must first refine the plan in order to produce a complete plan in terms of ground-level operations.


Hierarchical Task Network (HTN)

- use abstract operators to incrementally decompose a planning problem from a highlevel goal statement to a primitive plan network
- Primitive operators represent actions that are executable, and can appear in the final plan
- Non-primitive operators represent goals (equivalently, abstract actions) that require further decomposition to be executed

HTN operator: Example

```
OPERATOR decompose
PURPOSE: Construction
CONSTRAINTS:
    Length (Frame) <= Length (Foundation),</pre>
    Strength (Foundation) > Wt(Frame) + Wt(Roof)
        + Wt(Walls) + Wt(Interior) + Wt(Contents)
PLOT: Build (Foundation)
   Build (Frame)
      PARATITIET
         Build (Roof)
            Build (Walls)
      END PARALLEL
      Build (Interior)
```

HTN planning: Example

Some Games Using GOAP Architectures

- F.E.A.R. 2005
- Condemned: Criminal Origins 2005
- S.T.A.L.K.E.R.: Shadow of Chernobyl 2007
- Ghostbusters 2008
- Silent Hill: Homecoming 2008
- Fallout 3 2008
- Empire: Total War 2009
- F.E.A.R. 2: Project Origin 2009
- Demigod, 2009
- Just Cause 2 2010
- Transformers: War for Cybertron 2010