Principles of Computer Game Design and Implementation

Lecture 9

We already knew

- Translation
- movement
- Rotation

Outline for Today

- Dot Product and its application
- Question: how to convert a world coordinate to a local coordinate

Credits

- J.M. van Verth, L.M. Bishop "Essential Mathematics for Games \& Interactive Applications: A Programmer's Guide". Morgan Kaufman Publishers, 2008.
- + Slides

Coordinate Systems

- Until now, we only considered the "screen" coordinates (e.g. 800x600) and "world" coordinates
- On the other hand, we've seen that translation and rotation are independent
- Well, how independent are they?

Planets Example Revisited (1)

protected void simpleInitGame() \{

moon.setLocalTranslation (40, 0, 0);
pivotNode.attachChild(moon);

Planet Example Revisited (2)

public void simpleUpdate(float tpf) \{ quat.fromAngleAxis(tpf, axis); pivotNode.rotate (quat); moon.move (tpf,0,0);

New simpleUpdate()

protected void simpleUpdate() \{

```
if (tpf < 1) {
    angle = angle + (tpf * 1);
    if (angle > 2*FastMath.PI) {
        angle -= 2*FastMath.PI;
    }
}
```

rotQuat.fromAngleAxis(angle, axis);
pivotNode.setLocalRotation(rotQuat);
moon.setLocalTranslation(moon.getLocalTransla tion().add(tpf*5,0,0));
\}

To See It Better

Replace sphere with AxisRods
or Box

Local Coordinate System

- Every object has it's own "local" coordinate system, which can be placed into the world coordinate system
- Screen coordinates and world coordinates are local coordinates

Advantages

- Objects can be manipulated "locally"
- Physical interaction is easier to describe
- Lighting of 3D objects is easier to compute
- However, a transformation from one coordinate system to another is required

What Are Local Coordinates

Three vectors $\mathbf{X}_{\mathrm{p}} \mathbf{Y}_{\mathrm{p}} \mathbf{Z}_{\mathrm{p}}$
define local coordinates at P

So, we need a way to transform between coordinates

Dot and Cross Products

- Given two vectors, \mathbf{V} and \mathbf{W}, there are two product operators
- V•W - a "dot" product
- A number
- Used to project
- V \times W - a "cross" product
- A vector
- Used to find normals

Dot Product

- Coordinate-independent definition
- Given V and W

$$
\mathbf{V} \cdot \mathbf{W}=\|\mathbf{V}\| \cdot\|\mathbf{W}\| \cdot \cos \theta
$$

where $\|\|\|$ is the length and
θ is the angle between the vectors

Dot Product

- In coordinates

$$
\begin{aligned}
\mathbf{V} & =\left(x_{v}, y_{v}, z_{v}\right) \\
\mathbf{W} & =\left(x_{w}, y_{w}, z_{w}\right) \\
\mathbf{V} \cdot \mathbf{W} & =x_{v} \cdot x_{w}+y_{v} \cdot y_{w}+z_{v} \cdot z_{w}
\end{aligned}
$$

Uses: Vector Length

- Since $\cos (0)=1$

$$
\mathbf{V} \cdot \mathbf{V}=\|\mathbf{V}\| \cdot\|\mathbf{V}\| \cdot \cos 0=\|\mathbf{V}\|^{2}
$$

- Hence,

$$
\|\mathbf{V}\|=\sqrt{\mathbf{V} \cdot \mathbf{V}}
$$

Uses: Measuring Angles

- On the one hand,

$$
\mathbf{V} \cdot \mathbf{W}=\|\mathbf{V}\| \cdot\|\mathbf{W}\| \cdot \cos \theta
$$

- On the other,

$$
\mathbf{V} \cdot \mathbf{W}=x_{v} \cdot x_{w}+y_{v} \cdot y_{w}+z_{v} \cdot z_{w}
$$

- So,

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{V} \cdot \mathbf{W}}{\|\mathbf{V}\| \cdot\|\mathbf{W}\|}\right)
$$

Uses: Classifying Angle

- Since $\|\mathbf{V}\|$ and $\|\mathbf{W}\|$ are non-negative

$$
\begin{array}{ll}
\text { - If } \mathbf{V} \cdot \mathbf{W}>0 & \text { then angle }<90^{\circ} \\
\text { - If } \mathbf{V} \cdot \mathbf{W}=0 & \text { then angle }=90^{\circ} \\
\text { - If } \mathbf{V} \cdot \mathbf{W}<0 & \text { then angle }>90^{\circ}
\end{array}
$$

Application: Collision Response

- V and W are speed vectors of two balls
- Three options:

$$
\begin{aligned}
(\mathbf{V}-\mathbf{W}) \cdot \mathbf{n}<0 & \text { Separating } \\
(\mathbf{V}-\mathbf{W}) \cdot \mathbf{n}=0 & \text { Resting } \\
(\mathbf{V}-\mathbf{W}) \cdot \mathbf{n}>0 & \text { Colliding }
\end{aligned}
$$

$\mathbf{V}-\mathbf{W}$ is the relative velocity
\mathbf{n} is the vector between centres of balls

Uses: Projection

- Suppose want to project \mathbf{W} onto \mathbf{V}

- Is part of \mathbf{W} pointing along \mathbf{V}
- Represented as

Uses: Projection

- From trig
$\left\|\operatorname{proj}_{\mathbf{v}} \mathbf{W}\right\|=\|\mathbf{W}\| \cos \theta=\frac{\mathbf{W} \cdot \mathbf{V}}{\|\mathbf{V}\|}$
- Now multiply by normalized \mathbf{V}, so

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{v}} \mathbf{W} & =\left\|\operatorname{proj}_{\mathbf{v}} \mathbf{W}\right\| \mathbf{U}_{\mathbf{v}}=\frac{\mathbf{W} \cdot \mathbf{V}}{\|\mathbf{V}\|} \frac{\mathbf{V}}{\|\mathbf{V}\|} \\
& =\frac{\mathbf{W} \cdot \mathbf{v}}{\mathbf{V} \cdot \mathbf{V}} \mathbf{V}
\end{aligned}
$$

Uses: Projection

- So,

$$
\operatorname{proj}_{\mathbf{V}} \mathbf{W}=\frac{\mathbf{W} \cdot \mathbf{V}}{\mathbf{V} \cdot \mathbf{V}} \mathbf{V}
$$

- If \mathbf{V} is already normalized (often the case), then becomes

$$
\operatorname{proj}_{\mathbf{U}} \mathbf{W}=(\mathbf{W} \cdot \mathbf{U}) \mathbf{U}
$$

Uses: Projection

- Can use this to break \mathbf{W} into components parallel and perpendicular to \mathbf{V}

$$
\operatorname{perp}_{\mathbf{V}} \mathbf{W}=\mathbf{W}-\operatorname{proj}_{\mathbf{V}} \mathbf{W}
$$

Uses: World Coordinates to Local Coordinates

$$
\begin{aligned}
& X_{\mathrm{p}}=\left((\mathbf{V}-\mathbf{P}) \cdot \mathbf{U}_{\mathrm{x}}\right) \\
& Y_{\mathrm{p}}=\left((\mathbf{V}-\mathbf{P}) \cdot \mathbf{U}_{\mathrm{y}}\right) \\
& Z_{\mathrm{p}}=\left((\mathbf{V}-\mathbf{P}) \cdot \mathbf{U}_{\mathbf{z}}\right)
\end{aligned}
$$

Need to know unit vectors $\mathbf{U}_{\mathbf{z}}, \mathbf{U}_{\mathbf{y}}, \mathbf{U}_{\mathbf{z}}$

