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Up to now, 

• Recap basic knowledge

• Decision tree learning
• General algorithm

• How to split

• Identify the best feature to split

• Stopping criteria

• Accuracy



Today’s Topics

• Overfitting

• k-NN classification



Example: regression using polynomial 

RMS: root mean square, 
i.e., the square root of 
the mean square

https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Mean_square


General phenomenon 



Overfitting in decision trees 



Prevent overfitting 

• cause: training error and expected error are different 
• there may be noise in the training data 

• training data is of limited size, resulting in difference from the true 
distribution 

• larger the hypothesis class, easier to find a hypothesis that fits the difference 
between the training data and the true distribution 

• prevent overfitting: 
• cleaner training data help! 

• more training data help! 

• throwing away unnecessary hypotheses helps! (Occam’s Razor) 



Overfitting in Decision Tree



Overfitting 

• consider error of model M over 
• training data: 

• entire distribution of data: 

• model               overfits the training data if there is an alternative 
model such that 

Perform better on 
training dataset

Perform worse on 
true distribution



Example 1: overfitting with noisy data 

• suppose 
• the target concept is 

• there is noise in some feature values 

• we’re given the following training set 



Example 1: overfitting with noisy data 

A noisy data sample:
X1 = t
X2 = f
X3 = t
X4 = t
X5 = f
Y = t



Example 1: overfitting with noisy data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 5/6

• Accuracy(Dtrue,M) = 100%



Example 1: overfitting with noisy data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) < 100%



Example 1: overfitting with noisy data 
Training set 
accuracy

True accuracy

5/6 100%

100% < 100 %

M2 is 
overfitting!

M1

M2



Example 2: overfitting with noise-free data 

• suppose 
• the target concept is

• P(X3 = t) = 0.5 for both classes 

• P(Y = t) = 0.66 

• we’re given the following training set 



Example 2: overfitting with noise-free data 

M1 M2



Example 2: overfitting with noise-free data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 100%

• Accuracy(Dtrue,M) = 50%

P(X3 = t) = 0.5
P(Y=t) = 0.66



Example 2: overfitting with noise-free data 

• What is the accuracy? 
• Accuracy(Dtraining,M) = 60%

• Accuracy(Dtrue,M) = 66%

P(X3 = t) = 0.5
P(Y=t) = 0.66



Example 2: overfitting with noise-free data 

• because the training set is a limited sample, there might be 
(combinations of) features that are correlated with the target concept 
by chance 

Training set 
accuracy

True accuracy

100% 50%

60% 66%

M1

M2

M1 is 
overfitting!



Avoiding overfitting in DT learning 

• two general strategies to avoid overfitting 
• 1. early stopping: stop if further splitting not justified by a statistical test 

• Quinlan’s original approach in ID3 

• 2. post-pruning: grow a large tree, then prune back some nodes 
• more robust to myopia of greedy tree learning 



Nearest-neighbor classification 



Nearest-neighbor classification 

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing 
• (it’s sometimes called a lazy learner) 

• classification stage
• given: an instance x(q) to classify

• find the training-set instance x(i) that is most similar to x(q)

• return the class value y(i) 



Nearest Neighbor

• When to Consider 
• Less than 20 attributes per instance 

• Lots of training data 

• Advantages 
• Training is very fast

• Learn complex target functions 

• Do not lose information 

• Disadvantages 
• Slow at query time

• Easily fooled by irrelevant attributes 



The decision regions for nearest-neighbor
classification 
• Voronoi diagram: each polyhedron indicates the region of feature 

space that is in the nearest neighborhood of each training instance 



k-nearest-neighbor classification 

• classification task
• given: an instance x(q) to classify 

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are the most similar 
to x(q)

• return the class value 

• (i.e. return the class that have the most number of instances in the k training 
instances





How can we determine similarity/distance 

• suppose all features are discrete 
• Hamming distance (or L0 norm): count the number of features for which two 

instances differ 

• Example: X = (Weekday, Happy?, Weather)  Y = AttendLecture? 
• D : in the table
• New instance: <Friday, No, Rain>
• Distances = {2, 3, 1, 2} 
• For 1-nn, which instances should be selected? 
• For 2-nn, which instances should be selected? 
• For 3-nn, which instances should be selected? 

v1 v2 v3 y

Wed Yes Rain No

Wed Yes Sunny Yes

Thu No Rain Yes

Fri Yes Sunny No

Fri No RainNew datum



How can we determine similarity/distance 

• Example: X = (Weekday, Happy?, Weather)  Y = AttendLecture? 
• New instance: <Friday, No, Rain>
• For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes), 

(<Fri, Yes, Sunny>, No)}

• Classification:

• v = Yes.

• v = No. 

So, which class 
this new instance 
should be in? 



How can we determine similarity/distance 

• suppose all features are continuous
• Euclidean distance: 

• Manhattan distance: 

where xf
(i) represents the f -th

feature of x(i)

Recall the difference and 
similarity with Lp norm



How can we determine similarity/distance 

• Example: X = (Height, Weight, RunningSpeed)  Y = SoccerPlayer? 
• D: in the table

• New instance: <185, 91, 13.0>

• Suppose that Euclidean distance is used. 

• Is this person a soccer player? 

v1 v2 v3 y

182 87 11.3 No

189 92 12.3 Yes

178 79 10.6 Yes

183 90 12.7 No

185 91 13.0New datum



How can we determine similarity/distance 

• if we have a mix of discrete/continuous features: 

• typically want to apply to continuous features some type of 
normalization (values range 0 to 1) or standardization (values 
distributed according to standard normal) 

• many other possible distance functions we could use ... 



Standardizing numeric features 

• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows 

• do the same for test instances, using the same 𝜇 and 𝜎 derived from 
the training data 


