Overtitting and
K-Nearest Neighbour

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/



Up to now,

* Recap basic knowledge

* Decision tree learning
* General algorithm
* How to split
|Identify the best feature to split
* Stopping criteria
* Accuracy



Today’s Topics

e Overfitting
 k-NN classification



Example: regression using polynomial

1
©— Training
©— Test
RMS: root mean square,
i.e., the square root of
0N the mean square
= 057
=]
0 O



https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Mean_square

General phenomenon

Error

Underfitting zone| Overfitting zone

Training error

(Generalization error

——
e .

Optimal Capacity
Capacity




Overfitting in decision trees

Accuracy

09

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

——

——————————————

On training data —
On test data -—--

10

20

30 40 50 60 70 80 90

Size of tree (number of nodes)

100



Prevent overfitting

e cause: training error and expected error are different
* there may be noise in the training data

* training data is of limited size, resulting in difference from the true
distribution

* larger the hypothesis class, easier to find a hypothesis that fits the difference
between the training data and the true distribution

* prevent overfitting:
* cleaner training data help!
* more training data help!

* throwing away unnecessary hypotheses helps! (Occam’s Razor)



Overfitting in Decision Tree



Overfitting

* consider error of model M over
* training data: Error(Diraining, M)
* entire distribution of data: Error(Dyyye, M)

* model M € H overfits the training data if there is an alternative
model M’ € H such that

Perform better on
Error(Dtraining, M) < Error(Diraining, M ’)/ training dataset

Error(Dirye, M) > Error(Dirye, Mf)\ Perform worse on

true distribution



Example 1: overfitting with noisy data

* suppose
e the target conceptis ¥ = X1 A X5
* there is noise in some feature values
* we're given the following training set

x | x, | x | x, | x Y
t t t t t t
t t f f t t
t 5 f t t f t
t [ f f t f f
t f t f f f
f t t f t f

\ noisy value



Example 1: overfitting with noisy data

tree that fits noisy training data

correct tree X,
T F
X; p Y = Xl A Xg
P
X, f
/\ t 2 A noisy data sample:
X, =t
t f X, =f

w

< X X X

T (02 T S

ot | I TR
- ~ ~+

—
—h




Example 1: overfitting with noisy data

correct tree

 What is the accuracy?
* Accuracy(Dy,iningsM) = 5/6
e Accuracy(D,,, .,M)=100%

true’

Y = Xl A Xg
X, X, X; X, X, Y
t t t t t t
t t f f t t
t 2 I t t f t
t £ f £ t f £
t f t f f f
f t t f t f

\ noisy value




Example 1: overfitting with noisy data

tree that fits noisy training data

Y = X1 ANXs
x, | x, | x, | x Y
t t t t t t
t t £ £ { {
, t £ t t £ {
 What is the accuracy? : //’ - - , : -
* Accur‘acy(Dtraining'IVI) =100% t f t f f f
* Accuracy(D;, .,M) < 100% £ { { f t f

\noisy value



Example 1: overfitting with noisy data

Training set
True accuracy
accuracy
ct tr
5/6 100%
Ml
M, Is
ee that fits noisy training data Ove rfitti n g !

M, 100% <100 %




Example 2: overfitting with noise-free data

* suppose
* the target conceptis Y = X7 A X5
* P(X; =1)=0.5 for both classes
* P(Y=1)=0.66
* we're given the following training set

X, X, X, X, X, Y
t t t t i t
t t t f i t
t t f t f t
t f f t f f
f t f f t f




Example 2: overfitting with noise-free data

X,
/ F ]
t T
M 1 M 2
X, X, X, X, X, Y
t t t t t t
t t t f t t
t t t t f t
t f f t f f
f t f f t f




Example 2: overfitting with noise-free data

A Y — X1 A Xg
>N
t \ﬂ P(X,=t)=0.5
P(Y=t) = 0.66
* What is the accuracy? X X, X; X, X
* Accuracy(DyiningsM) = 100%
* Accuracy(D;, ,M) = 50%

= [ | =+ | =+ | =+

t
f
t
t
f

-y [+ | =+ | =+ | e+
- [ | =+ | = | e+
= [y | =y | =+ |

e i R e e K




Example 2: overfitting with noise-free data

Y=XAKX
ALY
P(X;=t)=0.5
P(Y=t) = 0.66
* What is the accuracy? X X; X; X, | X, Y
* Accuracy(DyiningsM) = 60% t t t t t t
* Accuracy(D;, ,M) = 66% t t t f t t
t t t t f t
t f f t f f
f t f f t f




Example 2: overfitting with noise-free data

Training set
True accuracy
accuracy
X,
M / F 100% 50%
{ ‘ M, is
overfitting!
M, 60% 66%

* because the training set is a limited sample, there might be
(combinations of) features that are correlated with the target concept
by chance



Avoiding overfitting in DT learning

* two general strategies to avoid overfitting
» 1. early stopping: stop if further splitting not justified by a statistical test
* Quinlan’s original approach in ID3

» 2. post-pruning: grow a large tree, then prune back some nodes
* more robust to myopia of greedy tree learning



Nearest-neighbor classification



Nearest-neighbor classification

* learning stage
e given a training set (x(!), y1)) ... (x\™), yim), do nothing
* (it’'s sometimes called a lazy learner)

e classification stage
* given: an instance x(¥ to classify
* find the training-set instance x!! that is most similar to x(@
* return the class value y()



Nearest Neighbor

* When to Consider
* Less than 20 attributes per instance
* Lots of training data

* Advantages
* Training is very fast
e Learn complex target functions
* Do not lose information

* Disadvantages
* Slow at query time
» Easily fooled by irrelevant attributes



The decision regions for nearest-neighbor
classification

* Voronoi diagram: each polyhedron indicates the region of feature
space that is in the nearest neighborhood of each training instance



k-nearest-neighbor classification

e classification task
e given: an instance x@ to classify

* find the k training-set instances (x'1), yt1)... (x%%), yk)) that are the most similar
to X(Q)

* return the class value

k

y < argmax Y 5(v,»") S(a,b) = {

vevalues(Y) ;=]

1 ifa=»5b

0 otherwise

* (i.e. return the class that have the most number of instances in the k training
instances



To classify a new input vector x, examine the k-closest training data points to x
and assign the object to the most frequently occurring class

) . k=1
e % o ° o o k=5
o % o f
e O




How can we determine similarity/distance

* suppose all features are discrete

 Hamming distance (or LY norm): count the number of features for which two

instances differ

* D:inthe table

* New instance: <Friday, No, Rain>

* Distances ={2, 3, 1, 2}

* For 1-nn, which instances should be selected?
* For 2-nn, which instances should be selected?
* For 3-nn, which instances should be selected?

New datum

Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?

vl v2 v3 Yy
Wed Yes Rain No
Wed Yes Sunny Yes
Thu No Rain Yes
Fri Yes Sunny No
Fri No Rain




How can we determine similarity/distance

* Example: X = (Weekday, Happy?, Weather) Y = AttendLecture?
* New instance: <Friday, No, Rain>
* For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes),
(<Fri, Yes, Sunny>, No)}

e Classification: ) k |
y < argmax Y 5(v, ")

vevalues(Y) ;o1

So, which class
this new instance
should be in?

k
* v=Yes. 25(’”::9(3)) =0+1+0=1

k
* v=No. 25(v,y(i))=1+0+1:2
=1



How can we determine similarity/distance

 suppose all features are continuous
* Euclidean distance:

Y - - ) ts the f -th
(1) ()Y — ( @ () where x; represents
4(xx7) \/; X T feature of xt

e Manhattan distance:

(1) (/)Y — (i) _ () Recall the difference and
d(I & ) B Z‘If xf ‘ similarity with LP norm
f y



How can we determine similarity/distance

 Example: X = (Height, Weight, RunningSpeed) Y = SoccerPlayer?

 D:in the table

* New instance: <185, 91, 13.0>
* Suppose that Euclidean distance is used.

* |s this person a soccer player?

New datum

vl

v2 v3 Yy
182 87 11.3 No
189 92 12.3 Yes
178 79 10.6 Yes
183 90 12.7 No
185 91 13.0




How can we determine similarity/distance

* if we have a mix of discrete/continuous features:
[ <D (j)‘ PP -

. . x —x’| if f 1s continuous
dx,x0)=3%" I % i

= 11-8(x9,x0)if f is discrete

* typically want to apply to continuous features some type of
normalization (values range O to 1) or standardization (values
distributed according to standard normal)

* many other possible distance functions we could use ...



Standardizing numeric features

* given the training set D, determine the mean and stddev for feature x;

. 2 .
= (@) _ |1 @ _ )
Hi |D|in o = mz (2 — ;)
d=1 d=1
* standardize each value of feature x; as follows

d
xf }—M

g

* do the same for test instances, using the same u and o derived from
the training data



