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Up to now, 

• Recap basic knowledge

• Decision tree learning

• k-NN classification
• What is k-nearest-neighbor classification 

• How can we determine similarity/distance

• Standardizing numeric features (leave this to you) 



Today’s Topics

• Definition

• Speeding up k-NN
• edited nearest neighbour 
• k-d trees for nearest neighbour identification

• Variants of k-NN 
• K-NN regression
• Distance-weighted nearest neighbor
• Locally weighted regression to handle irrelevant features

• Discussions
• Strengths and limitation of instance-based learning
• Inductive bias 



Definition



k-nearest-neighbor classification 

• classification task
• given: an instance x(q) to classify 

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are the most similar 
to x(q)

• return the class value 

• (i.e. return the class that have the most number of instances in the k training 
instances



How can we determine similarity/distance 

• suppose all features are discrete 
• Hamming distance (or L0 norm): count the number of features for which two 

instances differ 

• Example: X = (Weekday, Happy?, Weather)  Y = AttendLecture? 
• D : in the table
• New instance: <Friday, No, Rain>
• Distances = {2, 3, 1, 2} 
• For 1-nn, which instances should be selected? 
• For 2-nn, which instances should be selected? 
• For 3-nn, which instances should be selected? 

v1 v2 v3 y

Wed Yes Rain No

Wed Yes Sunny Yes

Thu No Rain Yes

Fri Yes Sunny No

Fri No RainNew datum



How can we determine similarity/distance 

• Example: X = (Weekday, Happy?, Weather)  Y = AttendLecture? 
• New instance: <Friday, No, Rain>
• For 3-nn, selected instances: {(<Wed, Yes, Rain>, No), (<Thu, No, Rain>, Yes), 

(<Fri, Yes, Sunny>, No)}

• Classification:

• v = Yes.

• v = No. 

So, which class 
this new instance 
should be in? 



How can we determine similarity/distance 

• suppose all features are continuous
• Euclidean distance: 

• Manhattan distance: 

where xf
(i) represents the f -th

feature of x(i)

Recall the difference and 
similarity with Lp norm



How can we determine similarity/distance 

• Example: X = (Height, Weight, RunningSpeed)  Y = SoccerPlayer? 
• D: in the table

• New instance: <185, 91, 13.0>

• Suppose that Euclidean distance is used. 

• Is this person a soccer player? 

v1 v2 v3 y

182 87 11.3 No

189 92 12.3 Yes

178 79 10.6 Yes

183 90 12.7 No

185 91 13.0New datum



How can we determine similarity/distance 

• if we have a mix of discrete/continuous features: 

• typically want to apply to continuous features some type of 
normalization (values range 0 to 1) or standardization (values 
distributed according to standard normal) 

• many other possible distance functions we could use ... 



Standardizing numeric features 

• given the training set D, determine the mean and stddev for feature xi

• standardize each value of feature xi as follows 

• do the same for test instances, using the same 𝜇 and 𝜎 derived from 
the training data 



Speeding up k-NN



Issues

• Choosing k
• Increasing k reduces variance, increases bias 

• For high-dimensional space, problem that the nearest neighbor may 
not be very close at all! 

• Memory-based technique. Must make a pass through the data for 
each classification. This can be prohibitive for large data sets. 



Nearest neighbour problem 

• Given sample S = ((x1,y1),...,(xm,ym)) and a test point x, 

• it is to find the nearest k neighbours of x. 

• Note: for the algorithms, dimensionality N, i.e., number of features, is 
crucial. 



Efficient Indexing: N=2

• Algorithm 
• compute Voronoi diagram in O(m log m)

• See algorithm in https://en.wikipedia.org/wiki/Fortune's_algorithm

• use point location data structure to determine nearest neighbours  

• complexity: O(m) space, O(log m) time. 



Efficient Indexing: N>2

• Voronoi diagram: size in O(mN/2) 

• Linear algorithm (no pre-processing): 
• compute distance ||x − xi|| for all i ∈ [1, m]. 

• complexity of distance computation: Ω(N m). 

• no additional space needed. 

k-NN is a “lazy” learning 
algorithm – does virtually 
nothing at training time 

but classification/prediction 
time can be costly when the 
training set is large 



Efficient Indexing: N>2

• two general strategies for alleviating this weakness 
• don’t retain every training instance (edited nearest neighbor) 

• pre-processing. Use a smart data structure to look up nearest neighbors (e.g. 
a k-d tree) 



Edited instance-based learning 

• select a subset of the instances that still provide accurate 
classifications 

• incremental deletion

• incremental growth

Q1: Does ordering 
matter? 

Q2: If following the 
optimal ordering, do 
the two approaches 
produce the same 
subset of instances?  



k-d trees 

• a k-d tree is similar to a decision tree except that each internal node 
• stores one instance 

• splits on the median value of the feature having the highest variance 



Construction of k-d tree

median value of the feature having the 
highest variance?  
-- point f, x1 = 6

x1>6
f



Construction of k-d tree

median value of the feature having the 
highest variance?  
-- point f, x1 = 6
-- point c, x2 = 10 and point h, x2 = 5

x1>6
f

x2>10
c

x2>5
h



Construction of k-d tree

There can be other methods of constructing k-d 
trees, see e.g., https://en.wikipedia.org/wiki/K-
d_tree#Nearest_neighbour_search



Finding nearest neighbors with a k-d tree 

• use branch-and-bound search 

• priority queue stores 
• nodes considered

• lower bound on their distance to query instance 

• lower bound given by distance using a single feature 

• average case: O(log2m) 

• worst case: O(m) where m is the size of the training-set 



Finding nearest neighbours in a k-d tree 
Intuitively, for a pair 
(node,value), value represents 
the smallest guaranteed 
distance, i.e., greatest lower 
bound up to now, from the 
instance x(q) to the set of 
instances over which node is 
the selected one to split

For example, the set of 
instances where root is the 
selected one to split over 
is the whole training set. 

(root,0) means that at the 
beginning, the guaranteed smallest 
distance to the training set is 0



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



k-d tree example (Manhattan distance) 



Extended Materials: Voronoi Diagram 
Generation
• https://en.wikipedia.org/wiki/Voronoi_diagram

• https://courses.cs.washington.edu/courses/cse326/00wi/projects/vor
onoi.html

https://en.wikipedia.org/wiki/Voronoi_diagram
https://courses.cs.washington.edu/courses/cse326/00wi/projects/voronoi.html


Variants of k-NN 



k-nearest-neighbor regression

• learning stage
• given a training set (x(1) , y(1)) ... (x(m) , y(m)), do nothing 
• (it’s sometimes called a lazy learner) 

• classification stage
• given: an instance x(q) to classify

• find the k training-set instances (x(1), y(1))... (x(k), y(k)) that are most similar to 
x(q)

• return the value

Average over 
neighbours’ values



Distance-weighted nearest neighbor

• We can have instances contribute to a prediction according to their 
distance from x(q)

• classification: 

• regression: 
reciprocal of the 
distance

Intuition: instances 
closer to the current 
one is more important. 



Irrelevant features in instance-based learning 

here’s a case in which there
is one relevant feature x1 and a 1-NN 
rule classifies each instance correctly 

consider the effect of an 
irrelevant feature x2 on distances 
and nearest neighbors

Can you find a point (a,b) which is red, 
if classified only according to feature 
x1, but is green, if classified according 
to both features? 



Locally weighted regression 

• one way around this limitation is to weight features differently 

• locally weighted regression is one nearest-neighbor variant that does 
this 

• prediction task 
• given: an instance x(q) to make a prediction for 

• find the k training-set instances (x(1), y(1)) ... (x(k), y(k)) that are most similar to 
x(q)

• return the value 

What’s function f ?



Locally weighted regression 

• Determining function f
• Assume that f is a linear function over the features, i.e., 

• find the weights wi for each x(q) by

• After obtaining weights, for x(q), we have 

can do this using 
gradient descent (to 
be covered soon) 



Discussions



Strengths of instance-based learning 

• simple to implement 

• “training” is very efficient 

• adapts well to on-line learning 

• robust to noisy training data (when k > 1) 

• often works well in practice 



Limitations of instance-based learning 

• sensitive to range of feature values 

• sensitive to irrelevant and correlated features, although ... 
• there are variants (such as locally weighted regression) that learn weights for 

different features 

• classification/prediction can be inefficient, although …
• edited methods and k-d trees can help alleviate this weakness 

• doesn’t provide much insight into problem domain because there is 
no explicit model 



Inductive bias 

• inductive bias is the set of assumptions a learner uses to be able to 
predict yi for a previously unseen instance xi 

• two components 
• hypothesis space bias: determines the models that can be represented 

• preference bias: specifies a preference ordering within the space of models 

• in order to generalize (i.e. make predictions for previously unseen 
instances) a learning algorithm must have an inductive bias 



Consider the inductive bias of DT and k-NN 
learners 


