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Up to now,

* Two Classical Machine Learning Algorithms
* Decision tree learning

* K-nearest neighbor
* What is k-nearest-neighbor classification
* How can we determine similarity/distance
e Standardizing numeric features
e Speeding up k-NN
* edited nearest neighbour
* k-d trees for nearest neighbour identification



Confidence for decision tree (example)

 Random forest:
* multiple decision trees are trained, by using different resamples of your data.

* Probabilities can be calculated by the proportion of decision trees which vote
for each class.

* For example, if 8 out of 10 decision trees vote to classify an instance
as positive, we say that the confidence is 8/10.

Here, the confidences of
all classesadd up to 1



Confidence for k-NN classification (example)

k
* Classification steps are the same, recall $ « argmax ) (v, ")

vevalues(Y) ;o1

e Given a class Y, we compute Accumulated

distance to the

k
acc_dist = Z 5(4,yD) - distance(q, y(i))/ supportive

instances
i=1

* apply sigmoid function on the reciprocal of the accumulated distance

. 1 Here, the confidences
COﬂdeEﬂCE — 1 of all classes may not
]_ —|— € acc_dist addupto1l

\ Softmax?



Today’s Topics

* linear regression

* linear classification

* logistic regression



Recap: dot product in linear algebra

| 8 = arccos{x=y/1211y1)

|2 |2 -'
B -3— B -4_ L)
‘lUT:I} — 2 > 3 ]_ —|— 3 % 4 p— ]_4 Geometric meaning: can be

used to understand the angle
between two vectors



Linear regression



Linear regression

* Given training data {(z¥,y") : 1 < i < m} i.i.d. from distribution D

Linear Regression
Quadratic Regression
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Recap: Consider the inductive bias of DT and
<-NN learners

learner hypothesis space bias preference bias

ID3 decision tree trees with single-feature, axis- small trees identified by
parallel splits greedy search
k-NN Voronoi decomposition determined instances in neighborhood

by nearest neighbors belong to same class




Linear regression

* Given training data {(z®¥),y(®) : 1 <4 < m} i.i.d. from distribution D
* Find fu(z) = w!z that minimises

L(fw) =137 (wTz® — y®)?2

Hypothesis Class H \

L2 loss, or mean
square error



Linear regression

* Given training data {(z¥,y") : 1 < i < m} i.i.d. from distribution D
e Find fw(z) = wlz that minimises

L(fw) =137 (wTz® — y®)?2

* where
« wlz® — y(i) represents the error of instance (%

7

* Z(wTﬂ?(i) - y(i))g represents the square error of all training instances
i=1

1 — | -
So, = Z(sz(“) — y("'))2 represents the mean square error of all training instances

1=1



Linear regression

* Given training data {(z¥,y") : 1 < i < m} i.i.d. from distribution D
* Find fw(z) = w’z that minimises L(f,) = £ 3.7, (wTz® — y®)2
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Organise feature data into matrix

* Let X be a matrix whose i-th row is (a:(i))T

182 189 178 183
1) _ 2) _ 4) _
) = | 87 ) = | 92 z3) = | 79 z =1 90 Football player example:
11.3 12.3 10.6

12.7 (height, weight, runningspeed)

182 87 11.3] vl v2 v3 y
189 92 12.3 182 87 11.3 325 (No)
X = 178 79 10.6 189 92 12.3 344 (Yes)
183 90 12.7 178 79 10.6 350 (Yes)
- - 183 90 12.7 320 (No)




Transform input matrix with weight vector

 Assume a function fy,(z) = w
* Intuitively,

T

z with weight vector w = (1, —1, 20)

* by 20, running speed is more important than the other two features, and
* by -1, weight is negatively correlated to y

wlz® =[1 -1 20]« | 87

wlz?) = [1 —1 2(}]* 92

wlz® =311

182

11.3

189 ]

12.3]

= 321

= 343.0

wlz® = 347

(321]
343
311

347

This is the parameter
vector we want to learn



Organise output into vector

* Let y be the vector (y1),...,y(™m)T

vl v2 v3 Yy

182 | 87 11.3 | 325
189 |92 12.3 | 344
178 |79 10.6 | 350
183 |90 12.7 | 320

(325 ]
344
300

320



Error representation

3217 325

343 344
Xw = _

347 1320

e Square error of all instances

m

> = || Xw =y

1=1



Linear regression : optimization

* Given training data {(z¥,y") : 1 < i < m} i.i.d. from distribution D
e Find fuw(z) = wl'z that minimises f,(fw) = L5 (wTz(®) — y(9))2

m

e Let X be a matrix whose i-th row is (ﬂ::(i))T, y be the vector Now we knew

where this
(’g(l), ’y(m))T / comes from!

L(fy)= 25" (wlz® — y)2 = L|| Xw —y||2

Solving this optimization problem will be
introduced in later lectures.



Variant: Linear regression with bias



Linear regression with bias

* Given training data {(z¥,y") : 1 < i < m} i.i.d. from distribution D
* Find f,,(z) = w' = + b that minimises the loss

\

Bias Term

* Reduce to the case without bias: Intuitively, every instance

¢ Let w’ [w b] z' = [37 1] is extended with one
\ more feature whose value
e Then fuwp(z) = w Te4+b=(w is always 1, and we
already know the weight

for this feature, i.e., b



Linear regression with bias

* Think about bias b = —330 for the football player example

e
13
~19
— 17 -

X'w =

Can do a bit of
exercise on this.



Variant: Linear regression with lasso penalty



Linear regression with lasso penalty

* Given training data {(z¥,y") : 1 < i < m} i.i.d. from distribution D
* Find fy,(z) = wlxz + b that minimises the loss

L(fw) = 7 X1 (wTz® —y )2 + AJwly

N\

lasso penalty: L' norm
of the parameter,
encourages sparsity



Variant: Evaluation Metrics



Evaluation Metrics

* Root mean squared error (RMSE)
* Mean absolute error (MAE) — average L! error
e R-square (R-squared)

* Historically all were computed on training data, and possibly adjusted
after, but really should cross-validate



Linear classification



Linear classification

Class 1

Class O




Linear classification: natural attempt

* Given training data { z(), y(i)) : 1 <4< m}i.id. from distribution D

e Hypothesis fu(z) = w'z
ey=1ifw/x>0 ~ Piecewise Linear
e y=0ifwlx<0 model H

Still, w is the vector of

Or more formally, let y = step(fo(x)) = Step(’wT:E) parameters to be trained.

where step(m)=1,ifm>0and But what is the

step(m) = 0, otherwise optimization
objective?



Linear classification: natural attempt

* Given training data {(z¥,y") : 1 < i < m} i.i.d. from distribution D

e Find fu(z) = wlz that minimises

™m

E(fu) = = Tfstep(uwTz®) £ 4]

m 1—=1
* Drawback: difficult to optimize \ loss = 0. i.e. no loss. when

e NP-hard in the worst case 0-1 loss the classification is the
same as its label.

loss =1, otherwise.



Linear classification

-8t d R}

—4 -2 0 2 4 6 8 -4 -2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

Drawback: not
robust to “outliers”



logistic regression



Why logistic regression?

* It's tempting to use the linear regression output as probabilities

* but it's a mistake because the output can be negative and greater
than 1, whereas probability can not.

Logistic regression always
outputs a value between 0 and 1



Compare the two

/ Linear regression

y=wlx

/ Linear classification

y = step(w’ x)




Between the two

* Prediction bounded in [0,1]

e Smooth

* Sigmoid:

o ({1) — 1—|—emi:l(—ﬂr)




Linear regression: sigmoid prediction

e Squash the output of the linear function

& 1

Sigmoid(w! z) = o(wl z) =

New optimization objective

L(fw) = 230 (o(wTz®) — y®)2

14+exp(—w

z)

Question: Do we
need to squash y?



Linear classification: logistic regression

L(fw) = = Yt (o(wTz®) — y()3
* |s this the final?

We need a probability!

If v'"is either 0 or 1, can we interpret o(w?z®)
as a probability value?



Linear classification: logistic regression

* A better approach: Interpret as a probability

Here we
assume that

P’w(y — 1‘37) — O'(UJTQ’}) y=0 or y=1

P,(y=0|2)=1-P,y(y=1]|2z)=1-0c(w!z)

Conditional probability



Linear classification: logistic regression

e Find fw(z) = w'z that minimises

Why log function used? To

R 1 & (4) 1..(0) / avoid numerical instability.
L(fuw) = — ;long(y )
‘ unfold

E(fa)= - Y logo(wTz®) — — 3 loglt — o (w"z)]

\ Logistic regression:

MLE (maximum likelihood estimation)
with sigmoid



Linear classification: logistic regression

* Given training data {(z(¥),y(") : 1 <4 < m} i.i.d. from distribution D
* Find w that minimises

L(fw) = — ) logo(w'z™) - - Y log[l —o(w"z™))

No close form solution;
Need to use gradient descent



Why sigmoid function?

* Bounded
o(a) = 1+ exp(—a) € (0.1)
* Symmetric
exp(—a) 1
1-0(a) = 1+ exp(—a) exp(a)+1 o(=a)
* Gradient
exp(—a)

7@ = 0¥ exp(—a))?

= ag(a)(1 —oa(a))



Exercises

* Given the dataset and consider the mean square root error, if we

have the following two linear functions:

x1 X2 x3 Yy
* fulx) = 2x; + 1x, + 20x, - 330 182 87 113|325
* fulx) = 1x; - 2x, + 23x; — 332 189 92 123|344
please answer the following questions: 178 79 106  |350
e (1) which model is better for linear regression? 183 90 12.7 320

* (2) which model is better for linear classification
by considering 0-1 loss for y'=(No,Yes,Yes,No)?
* (3) which model is better for logistic regression for y'=(No,Yes,Yes,No)?

* (4) According to the logistic regression of the first model, what is the
prediction result of the first model on a new input (181,92,12.4).




