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Up to now, 

• Traditional Machine Learning Algorithms

• Deep learning 
• Introduction to Deep Learning (history of deep learning, including perceptron, 

multi-layer perceptron, why now?, etc)



Today’s Topics

• Functional View of DNNs

• Learning Representations & Features 



Functional View of DNNs



What is a function?

• In programming, a named section of a program that performs a 
specific task. In this sense, a function is a type 
of procedure or routine. 

• The term function is also used synonymously 
with operation and command. For example, 
you execute the delete function to erase a word.



What is a nested function? 

• a nested function (or nested procedure or subroutine) is 
a function which is defined within another function, the enclosing 
function.





Functional View of DNNs

• A family of parametric, non-linear and hierarchical representation 
learning functions, which are massively optimized with stochastic 
gradient descent to encode domain knowledge, i.e. domain 
invariances, stationarity. 
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Note:

• Functions h1, h2, …, hL, are usually given. 

• Parameters                     are obtained by learning algorithm



Training Objective

Given training corpus {𝑋, 𝑌} find optimal parameters 

Loss function

Prediction

Ground truth

accumulated loss

Find an optimal model 
parameterised over 



Learning Representations & Features 



Raw digital representation -- Image 



Raw digital representation -- Video



Learning Representations & Features 

• Traditional pattern recognition 

• End-to-end learning Features are also learned from data 

SVM, decision 
tree, etc

Eye, nose, etc

CNN Fully-connected/multi-layer perceptron



Non-separability of linear machines 

• 𝑋= {𝑥1,𝑥2,...,𝑥𝑛 } ∈ R𝑑

• Given the 𝑛 points there are in                                                                   
total 2𝑛 dichotomies

• Only about 𝑑 are linearly separable 

• With 𝑛 > 𝑑 the probability 𝑋 is linearly                                               
separable converges to 0 very fast 

• The chances that a dichotomy is linearly                                            
separable is very small 



Non-linearizing linear machines 

• Most data distributions and tasks are non-linear

• A linear assumption is often convenient, but not necessarily truthful

• Problem: How to get non-linear machines without too much effort? 

• Solution: Make features non-linear 

• What is a good non-linear feature?
• Non-linear kernels, e.g., polynomial, RBF, etc 

• Explicit design of features (SIFT, HOG)? 



Kernel: low dimension -> high dimension



SIFT



Good features 

• Invariant
• But not too invariant 

• Repeatable 
• But not bursty

• Discriminative
• But not too class-specific 

• Robust
• But sensitive enough 



Data manifold

• High-dimensional data (e.g. faces) lie on lower dimensional manifolds

• This is so-called "swiss roll". The data points are in 3d, but they all lie on 2d 
manifold, so the dimensionality of the manifold is 2, while the 
dimensionality of the input space is 3.

Every point 
represents an 
input sample. 



Data manifold is usually lower dimensional 
than the original 

• High-dimensional data (e.g. faces) lie on lower dimensional manifolds

• Although the data points may consist of thousands of features, they 
may be described as a function of only a few underlying parameters. 
• That is, the data points are actually samples from a low-dimensional manifold 

that is embedded in a high-dimensional space.

• Goal: discover these lower dimensional manifolds
• These manifolds are most probably highly non-linear 



Hypothesis

• High-dimensional data (e.g. faces) lie on lower dimensional manifolds
• Goal: discover these lower dimensional manifolds

• These manifolds are most probably highly non-linear 

• Hypothesis (1): Compute the coordinates of the input (e.g. a face 
image) to this non-linear manifold -> data become separable 

• Hypothesis (2): Semantically similar things lie closer together than 
semantically dissimilar things 



Hypothesis (1) -> existence of functional 
mapping
• High-dimensional data (e.g. faces) lie in lower dimensional manifolds

• So there should be a (non-linear) function mapping from 3d space to 
2d space, on which the data can be linearly separable. 

Every point 
represents an 
input sample. 



Hypothesis (2) -> some existing dimensional 
reduction methods

It is not linear, but can 
be largely separated 
with a dimensionality 
much less than 28*28



Hypothesis (2) -> some existing dimensional 
reduction methods

PCA (Principle 
Component Analysis), 
2-dimensional 



The digits manifolds 

• There are good features and bad features, good manifold 
representations and bad manifold representations 

• 28 pixels x 28 pixels = 784 dimensions 



Difficulties of simply using dimensionality 
reduction or kernel
• Raw data live in huge dimensionalities

• Semantically meaningful raw data prefer lower dimensional manifolds 
• Which still live in the same huge dimensionalities

• Can we discover this manifold to embed our data on? 



End-to-end learning of feature hierarchies 

• A pipeline of successive modules 

• Each module’s output is the input for the next module 

• Modules produce features of higher and higher abstractions
• Initial modules capture low-level features (e.g. edges or corners)

• Middle modules capture mid-level features (e.g. circles, squares, textures) 

• Last modules capture high level, class specific features (e.g. face detector) 

• Preferably, input as raw as possible 
• Pixels for computer vision, words for NLP 



Convolutional networks in a nutshell 



Feature visualization by CNN



Why learn the features? 

• Manually designed features 
• Often take a lot of time to come up with and implement 
• Often take a lot of time to validate 
• Often they are incomplete, as one cannot know if they are optimal for the 

task 

• Learned features 
• Are easy to adapt 
• Very compact and specific to the task at hand 
• Given a basic architecture in mind, it is relatively easy and fast to optimize 

• Time spent for designing features now spent for designing 
architectures 


