Learning with neural
networks

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/

Up to now,

* Traditional Machine Learning Algorithms

e Deep learning
* Introduction to Deep Learning
* Functional view and features

Topics

* Forward and backward computation
* Back-propogation and chain rule
* Regularization

Initialisation

* Collect annotated data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “forward propagation”

e Evaluate predlctlons and update model weights

Model Score/Predwtww/Out'put Objective/Loss/Cost/Energy

L(;y;, h)

Forward computations

* Collect annotated data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “forward propagation”

* Evaluate predictions and update model weights

Scove/Prediction/Output Objective/Loss/Cost/Energy

L(9; i, h)

Model

Sata
- L\

Input: X
Targets: Y

i)

Forward computations

* Collect annotated data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “forward propagation”

* Evaluate predictions and update model weights

Model Score/Prediction/Output Objective/Loss/Cost/Energy

DALH
LN [N

Input: X
Targets: Y

Forward computations

* Collect annotated data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “forward propagation”

° Evaluate predlctlons and 1nAata maAadal wiaiahte

Model Score/Prediction/Output Objective/Loss/Cost/Energy

L(9; ¥;, h)

\‘

Targets: Y

i -

Backward computations

 Collect gradient data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “backpropagation”

* Evaluate predictions and update model weights

Model Score/Prediction/Output Objective/Loss/Cost/Energy

Input: X

Targets: Y

Backward computations

 Collect gradient data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “backpropagation”

* Evaluate predictions and update model weights

Model Score/Prediction/Output Objective/ Loss/Cost/Energy

0L(9; ;)

o bata

Input: X

Targets: Y

Backward computations

 Collect gradient data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “backpropagation”

* Evaluate predictions and update model weights

Modlel Score/Prediction/Output Ojective/ Loss/Cost/Energy

0L(; ;)

© bata

Input: X
Targets: Y

Backward computations

 Collect gradient data
* Define model and initialize randomly Update weight

* Predict based on current model
* In neural network jargon “backpropagation”

* Evaluate predictions and update model weights
Modlel Score/Prediction/Output

Oh(x;) 9y 0L(D; yi)

Objective/Loss/Cost/Energy

g a0 ah 0¥
Input: X . . .

Targets: Y

Backward computations

 Collect gradient data
* Define model and initialize randomly

* Predict based on current model
* In neural network jargon “backpropagation”

* Evaluate predictions and update model weights

Modlel Score/Prediction/Output Oujective/ Loss/Cost/ Energy

aL(Y; ¥;)

Input: X -

Targets: Y r

Recall: Training Objective

Given training corpus {X, Y} find optimal parameters

Find an optimal model Ground truth

parameterised over
/ Prediction

0™ « arg ming Z {(y,a; (Ii 01,..L))

(x y)S(X,Y) \

accumulated loss Loss function

Forward Computation

Example

Network:

b1 b2

. 3 i
Loss function: Eiotal = 3 sltarget — out put)*

Example

* Training data (a single sample)
e given inputs 0.05 and 0.10, we want

the neural network to output
0.01 and 0.99.

It -'IIII'_ — |'|"'_ * .-:-_ + |'|"2 E .-:2 + Il-.i'-_ E]_

—p—

netypy =010=0.004+ 0201+ 0301 = 03770

outp) = ——mrr = T = 0.093269992

outys = 0.596884378

o)

b2

Example

* Training data (a single sample)
e given inputs 0.05 and 0.10, we want
the neural network to output
0.01 and 0.99.

LI 'II-:'_ = Uy = |'.||'I'-'I,II'_ + tlg = I'.||'|'.'I|||2 + |I-.I'_:| *]_
net,y = 004 = 0,093269992 4+ 0,45 = (0.096854378 + 0.6 % 1 = 1. 100900967

b1 b2
oity) = = = =TT = 070136507 1 1

(. 772925465

ottt

—t

Example

* Training data (a single sample)
e given inputs 0.05 and 0.10, we want

the neural network to output
0.01 and 0.99.

E, = itarget,; — out,)* = 3{0.01 — 0.75136507)* = 0.274811083

o) b2

E. . = 0.023560026

Eiotar = Fo1 + E,o = 0274811083 + 0.023560026 = 0.298371109

Backward Propogation

Recall: Minimizing with multiple dimensional
Inputs
* We often minimize functions with multiple-dimensional inputs

f:R" — R

* For minimization to make sense there must still be only one (scalar)
output

Functions with multiple inputs

Note: In the training objective case,

* Partial derivatives Ctheloss 2o lwar(z;61..1)
a (z,y)e(X,Y)
:B) the parameter xis g
551

measures how f changes as only variable x; increases at point x

* Gradient generalizes notion of derivative where derivative is wrt a
vector

* Gradient is vector containing all of the partial derivatives denoted

V.f(z) = (aif(m% iﬂf(m))

Optimization through Gradient Descent

* As with many model, we optimize our neural network with Gradient
Descent

9+ = 9(t) — n (7, L
* The most important component in this formulation is the gradient

* Backpropagation to the rescue
* The backward computations of network return the gradients
 How to make the backward computations

J(0,.9,) ‘

0,

Weight Update

w_|_ — W naEtotal
J— 5 S
0 8'w5
w_|_ — W naEtotal
— 1 . b1 . b2
1 8’101

1
where Fltotal = Z i(taxrget — output)?

Example

it ir”J rﬂrr.l.'lll,' ; r}.lr',-l.,,_.ll._.' i”',-,:....,..,.'
3 = F —
output e, cnet ! chout g churs,
hi
w5
output wb -
r:g net | out,, E .1 = 2(target ;- out 4 y
Etotal =Ec1+*E 2
b2
1

b1.25

b2 .60

Example

OF ial _ OF otal ot " dnet
s, ot o1 et chus

IEpotal _ 9 4
ot -

(target,, — out,)* L s —1 41

|-\._.||_|.

Wiotal — _(target,; — out,;) = —(0.01 — 0.75136507) = 0.74136507

dout
_ 1
out g = v
% = out,yl1 — out,) = 0.70136007(1 — 0.75136507) = 0. 186815602 e 1 b2 .60

net,; = wy * outyy + wg * outys + by # 1

Inctal — | & putyy % wh 40+ 0 = outy, = 0.593260992

ity

Example

chwy dout et chus

OF ial OF otal N vt " dnet g

Weotal — (), 74136507 0.186815602 = 0.593269992 = 0.082167041

g
wi = 1wy — 1 * ‘:J:r”" = (14 — 0.0 % (L052167041 = 0.30801645
wit = L408666186 b1.35 b2 60

wi = (Lol1301270
wy = L.061370121

Example

“'Er..f,.-l "['-.r..:.;.' : ""“’i.[. Une ’I‘[
. = e 3 E 3
chey dout Onetyy ey

v

] X 'E
OEiat _ OEay |

H‘,'.,.:

""“’i.l o rlunf,-‘l ' f':n‘lz'h]

b1.25 b2 &0

b1 b2

Chain rule

* Assume a nested function, z = f(y) and y= g(x)

* Chain Rule for scalars x, y, z @
dz _ dz dy
dx ay dx

* When x€ R™,ye R™. z€R @ @

dz _) dz dy;
dx; Jd}’j dx;

* i.e., gradients from all possible paths @ @ @

Chain rule

* Assume a nested function, z = f(y) and y= g(x)
* Chain Rule for scalars x, y, z

dz _ dz dy SOD

dx ay dx

* When x€ R™,ye R™. z€R
dz dz 4y Q @ @

dx; - ZJ dyj dxj

1 2
* i.e., gradients from all possible paths dz __ dz dy” dz dy

dxl dy!l dxleyz dx1

Chain rule

* Assume a nested function, z = f(y) and y= g(x) o
* Chain Rule for scalars x, y, z

dz _ dz dy)

dx ay dx
* When x€ R™,y€ R".Z€R

e, OO @

dx; - ZJ dyj dxj

* i.e., gradients from all possible paths dz _ dz dy' dz dy*
dx¢ dyl dszdyz dx?

Chain rule

* Assume a nested function, z = f(y) and y= g(x)
* Chain Rule for scalars x, y, z

dz dzdy

dx dy dx

* Whenxe€ R™,y€ R".Z€R
dz

9z _ 3 dz ay;
dx; J dyj dxj

* j.e., gradients from all possible paths dz _ dz dy' dz dy°
dx® dyldx3 dy?dx3

Chain rule

* Assume a nested function, z = f(y) and y= g(x)

* ChainRule forscalarsx,y,z: Z=%%
dx dy dx
* When x€ R™,ye R",z€R @

dz -
ax ~ 2 ay; dx,

dyj- dx;
* i.e., gradients from all possible paths @ @

* Or in vector notation -
dz (dy) dz

i \dx) d 1) 2) 3)
d
+ =2 is the Jacobian @ @ @

dx

The Jacobian

* When x€ R3, y€ R?

d
J(y(x)) = % =

dy @)

dx)
ay(ZJ

dx (1)

Chain rule in practice

* f(y) =sin(y) ,y=g(x) =0.5x?

df _ d|[sin(y)] d[0.5x?]

dx dg dx
= cos(0.5x%) - x

Backpropagation

General Workflow

Step 1- .
Random initialization Desired loss
l Inputs outputs function
Step 7 actual Loss (error)
ep /- outputs
lterate until > Step 2- . D Step3- L metric
convergence Feed Forward Calculate loss function at this step
‘stack
‘ ’ Stack of calculation graph
(automatically created)
gradients unstack gradient
for all for
| layer the last \ J
Step6 eSS T e
Update the weights | '
P 9 Backpropagate derivative of error

Update Optimizer function (delta
frequency rule / adadelta...)

Regularization as Constraints

Recall: what is regularization?

* In general: any method to prevent overfitting or help the optimization

 Specifically: additional terms in the training optimization objective to
prevent overfitting or help the optimization

Recall: Overfitting

* Key: empirical loss and expected loss are different

* Smaller the data set, larger the difference between the two

 Larger the hypothesis class, easier to find a hypothesis that fits the
difference between the two

* Thus has small training error but large test error (overfitting)

 Larger data set helps
 Throwing away useless hypotheses also helps (regularization)

Regularization as hard constraint

* Training objective .
A 1
min L(f) = 52 L(F %1, 72)
L=

Adding
constraints

subjectto: feXH

* When parametrized
1 n
mén E(H) — EZ I(eri!yi)
i=1

subjectto: 8 € (2

Regularization as hard constraint

* When () measured by some quantity R

mln L(O) = Z [(6,x;,y;)

subjectto: R(8) <r

* Example: [, regularization \ Adding

constraints

T
1
min L(B) = ;Z I(G,xi;yt:/
i=1

subject to: ||8]]|5 <

Regularization as soft constraint

* The hard-constraint optimization is equivalent to soft-constraint

n
) 1
min Ly (6) = ;Z 1(6,x;,7:) + A"R(6)
1=1

for some regularization parameter A* >0 \ Adding

. . constraints
i Exaln |€Zl re uIarlzatlon
2

T

R 1

min Lz(6) = > 1(6,%,y,) + X'116]
1=1

Regularization as soft constraint

* Showed by Lagrangian multiplier method Adding

constraints

L£(6,1) =L(6) + A[R(O) —]
e Suppose 0* is the optimal for hard-constraint optimizatior/
6* = argmin 131&3{13(9,3.) = L(0) + A[R(0) —/'1]
[a =

-

e Suppose A* is the corresponding optimal for max

9* = argglin £(6,1*) ==L(O) + A*[R(B) — 1]

