
Learning with neural 
networks

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/ 



Up to now, 

• Traditional Machine Learning Algorithms

• Deep learning 
• Introduction to Deep Learning

• Functional view and features



Topics 

• Forward and backward computation

• Back-propogation and chain rule

• Regularization



Initialisation

• Collect annotated data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “forward propagation” 

• Evaluate predictions and update model weights



Forward computations 

• Collect annotated data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “forward propagation” 

• Evaluate predictions and update model weights 



Forward computations 

• Collect annotated data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “forward propagation” 

• Evaluate predictions and update model weights 



Forward computations 

• Collect annotated data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “forward propagation” 

• Evaluate predictions and update model weights 



Backward computations 

• Collect gradient data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “backpropagation” 

• Evaluate predictions and update model weights 



Backward computations 

• Collect gradient data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “backpropagation” 

• Evaluate predictions and update model weights 



Backward computations 

• Collect gradient data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “backpropagation” 

• Evaluate predictions and update model weights 



Backward computations 

• Collect gradient data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “backpropagation” 

• Evaluate predictions and update model weights 

Update weight



Backward computations 

• Collect gradient data 

• Define model and initialize randomly 

• Predict based on current model
• In neural network jargon “backpropagation” 

• Evaluate predictions and update model weights 



Recall: Training Objective

Given training corpus {𝑋, 𝑌} find optimal parameters 

Loss function

Prediction

Ground truth

accumulated loss

Find an optimal model 
parameterised over 



Forward Computation



Example

Network:

Loss function:



Example

• Training data (a single sample)
• given inputs 0.05 and 0.10, we want 

the neural network to output 

0.01 and 0.99.



Example

• Training data (a single sample)
• given inputs 0.05 and 0.10, we want 

the neural network to output 

0.01 and 0.99.



Example

• Training data (a single sample)
• given inputs 0.05 and 0.10, we want 

the neural network to output 

0.01 and 0.99.



Backward Propogation



Recall: Minimizing with multiple dimensional 
inputs 
• We often minimize functions with multiple-dimensional inputs

• For minimization to make sense there must still be only one (scalar) 
output 



Functions with multiple inputs 

• Partial derivatives 

measures how f changes as only variable xi increases at point x 

• Gradient generalizes notion of derivative where derivative is wrt a 
vector 

• Gradient is vector containing all of the partial derivatives denoted 

Note: In the training objective case, 

f is the loss

the parameter x is 



Optimization through Gradient Descent 

• As with many model, we optimize our neural network with Gradient 
Descent 

• The most important component in this formulation is the gradient 

• Backpropagation to the rescue
• The backward computations of network return the gradients 

• How to make the backward computations 



Weight Update

where



Example



Example

1.

2.

3.



Example



Example



Chain rule 

• Assume a nested function, 𝑧 = 𝑓(𝑦) and y= g(x) 

• Chain Rule for scalars 𝑥, 𝑦, 𝑧

• When 𝑥∈ R𝑚,𝑦∈ R𝑛, 𝑧∈R 

• i.e., gradients from all possible paths 



Chain rule 

• Assume a nested function, 𝑧 = 𝑓(𝑦) and y= g(x) 

• Chain Rule for scalars 𝑥, 𝑦, 𝑧

• When 𝑥∈ R𝑚,𝑦∈ R𝑛, 𝑧∈R 

• i.e., gradients from all possible paths 



Chain rule 

• Assume a nested function, 𝑧 = 𝑓(𝑦) and y= g(x) 

• Chain Rule for scalars 𝑥, 𝑦, 𝑧

• When 𝑥∈ R𝑚,𝑦∈ R𝑛,𝑧∈R 

• i.e., gradients from all possible paths 



Chain rule 

• Assume a nested function, 𝑧 = 𝑓(𝑦) and y= g(x) 

• Chain Rule for scalars 𝑥, 𝑦, 𝑧

• When𝑥∈ R𝑚,𝑦∈ R𝑛,𝑧∈R 

• i.e., gradients from all possible paths 



Chain rule 

• Assume a nested function, 𝑧 = 𝑓(𝑦) and y= g(x) 

• Chain Rule for scalars 𝑥, 𝑦, 𝑧 : 

• When 𝑥∈ R𝑚,𝑦∈ R𝑛,𝑧∈R 

• i.e., gradients from all possible paths 
• or in vector notation 

• is the Jacobian 



The Jacobian 

• When 𝑥∈ R3, 𝑦∈ R2



Chain rule in practice 

• f(y) =sin(𝑦) ,𝑦=𝑔(𝑥) =0.5𝑥2



Backpropagation 



General Workflow



Regularization as Constraints



Recall: what is regularization? 

• In general: any method to prevent overfitting or help the optimization 

• Specifically: additional terms in the training optimization objective to 
prevent overfitting or help the optimization 



Recall: Overfitting 

• Key: empirical loss and expected loss are different 

• Smaller the data set, larger the difference between the two 

• Larger the hypothesis class, easier to find a hypothesis that fits the 
difference between the two 
• Thus has small training error but large test error (overfitting) 

• Larger data set helps 

• Throwing away useless hypotheses also helps (regularization) 



Regularization as hard constraint 

• Training objective 

• When parametrized

Adding 
constraints 



Regularization as hard constraint 

• When 𝛺 measured by some quantity 𝑅

• Example: 𝑙2 regularization Adding 
constraints 



Regularization as soft constraint 

• The hard-constraint optimization is equivalent to soft-constraint 

for some regularization parameter 𝜆∗ > 0 

• Example: 𝑙2 regularization 

Adding 
constraints 



Regularization as soft constraint 

• Showed by Lagrangian multiplier method 

• Suppose 𝜃∗ is the optimal for hard-constraint optimization 

• Suppose 𝜆∗ is the corresponding optimal for max 

Adding 
constraints 


