Decision Tree Learning

Dr. Xiaowei Huang

https://cgi.csc.liv.ac.uk/~xiaowei/



Next week (Tuesday lecture skipped, lab
continued)

e Sunday, 13t Oct
* London -> New York

* Arrive at 1:00am, 14th, and give a talk at 15t

* Tuesday, 15t Oct
* New York -> Manchester (arrive 7:30am on 16t")

* So, we will have to skip a lecture

* Wednesday, 16" Oct
* Travel from Manchester in the morning to capture our lecture
e If | am not here on time, then | must have been stuck somewhere ...



First coursework

* First assignment will start from Thursday.
* It will take four weeks.
* We will have a briefing on Thursday lecture.



Decision Tree up to now,

* Decision tree representation



Today’s Topics

* A general top-down algorithm
* How to do splitting on numeric features
e Occam’s razor



History of decision tree learning
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2 was contemporaneous

ID3, C4.5, C5.0 developed by Ross Quinlan

CART developed by Leo Breiman, Jerome
Friedman, Charles Olshen, R.A. Stone
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Decision tree learning algorithms

* ID3, or Iternative Dichotomizer
* one property is tested on each node of the tree
* maximizing information gain

* CART, or Classification and Regression Trees
* binary trees
* splits are selected using the twoing criteria

* C4.5, improved version on ID3



Decision tree learning algorithms

Splitting Criteria

Attribute type

Pruning Strategy

Qutlier Detection

03 | Information Gain | FF2Mdles only Do not handle No pruning is done | SUScePtible to
Categorical value missing values. outliers
Handles both s :

CART | Towing Criteria | Categorical & Handle missing | Cost-Complexity Can handle

; values. pruning is used QOutliers

Numeric value
Handles both AV . ;

Ca4.5 Gain Ratio Categorical & Handle missing Error Based pruning | Susceptible to

Numeric value

values.

is used

outliers




Top-down decision tree learning
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MakeSubtree(set of training instances D) Step (2)

C = DetermineCandidateSplits(D)

if stopping criteria met
make a IGM
Step (3)
determine class label/probabilities for N
else

make an internal node N

Step (1)
S = FindBestSplito,¢y———7#1 ¢ —

for each outcome k of §
D, = subset of instances that have outcome %
k™ child of N = MakeSubtree(D,)

return subtree rooted at N



Step(1): FindBestSplit



Candidate splits on numeric features

* given a set of training instances D and a specific feature X

* sort the values of X.in D
 evaluate split thresholds in intervals between instances of different classes
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e could use midpoint of each considered interval as the threshold

* C4.5 instead picks the largest value of X: in the entire training set that
does not exceed the midpoint




Candidate splits on numeric features
(in more detail)

// Run this subroutine for each numeric feature at each node of DT induction

1 DetermineCandidateNumericSplits(set of training instances D, feature X))

2 C={} /l initialize set of candidate splits for feature X,

3 S = partition instances in D into sets s, ... s, where the instances in each
1 set have the same value for X;

5 let v, denote the value of X; for set s;

6 sort the sets in S using v; as the key for each s;

7 for each pair of adjacent sets s, s;,; in sorted S

8 if s; and s;,, contain a pair of instances with different class labels

9 /[ assume we're using midpoints for splits

10 add candidate split X; < (v;+ v, ;)/2to C

11 return C



Example

 (1,a),(2,b),(1,c),(0,b),(3,b) for (value of a feature, label)

* 1(0,b)}, 1(1,a),(1,¢)}, 1(2,b)}, 1(3,b)}

0.5

ey (OO
¢ C={X <= 0.5, X,<=1.5}

* C={X;<=0.5,X;<=1.5,X;<= 25} ((0,b)} ((1,a),(1,0)} (2.,b),(3,b)}



Candidate splits

* instead of using k-way splits for k-valued features, could require
binary splits on all discrete features (CART does this)

reversible defect V fixed defect

color

red Vblue/\green V yellow




Top-down decision tree learning

1 MakeSubtree(set of training instances D) Step (2)
2 C = DetermineCandidateSplits(D)
3 if stopping criteria met
4 make a IGM
Step (3)

5 determine class label/probabilities for N
6 else
7 make an internal node N

_ . Step (1), explained
8 S = FindBestSplito,¢y———7#1 ¢ —
9 for each outcome & of S
10 D, = subset of instances that have outcome &
11 k* child of N = MakeSubtree(D,)

12 return subtree rooted at N



Step (2): DetermineCandidateSplit



Finding the best split

* How should we select the best feature to split on at each step?

* Key hypothesis: the simplest tree that classifies the training instances
accurately will work well on previously unseen instances



Occam’s razor

e attributed to 14th century William of Ockham
* “Nunquam ponenda est pluralitis sin necesitate”

4

* “Entities should not be multiplied beyond necessity”

* “when you have two competing theories that make exactly the same
predictions, the simpler one is the better”



But a thousand years earlier, |
said, “We consider it a good
principle to explain the
phenomena by the simplest
hypothesis possible.”




Occam’s razor and decision trees

* Why is Occam’s razor a reasonable heuristic for decision tree
learning?
* there are fewer short models (i.e. small trees) than long ones
* a short model is unlikely to fit the training data well by chance
* a long model is more likely to fit the training data well coincidentally



Finding the best splits

e Can we find and return the smallest possible decision tree that
accurately classifies the training set?

This is an NP-hard problem
[Hyafil & Rivest, Information Processing Letters, 1976]

* Instead, we’ll use an information-theoretic heuristics to greedily
choose splits



Recap: Expected Value (Finite Case)

* Let X be a random variable with a finite number of finite outcomes x,,
X,, ..., X, occurring with probability p,, p,, ..., p,, respectively. The
expectation of X is defined as

E[X] = pXy + PoXy + oo + PLX

* Expectation is a weighted average



Expected Value Example

* Let X represent the outcome of a roll of a fair six-sided die
e Possible values for X include {1,2,3,4,5,6}

* Probability of them are {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

. 1 1 1 1 1 1 i}
* The expected valueis E[X|=1-—-+2-—+43-—-+4.-—+45.-—+6-—= =235
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