
Lab Three

COMP 219 - Advanced Artificial Intelligence
Cameron Hargreaves, Wei Huang, Gaojie Jin, Xiaowei Huang

University of Liverpool

1 Reading

Begin by reading chapter three of Python Machine Learning until page 68 (p75 2nd edition)
found in the learning resources section of the vital page for COMP219. Code for this book
is available online via the vital page, the book website, or the end of this document, try and
go through each line and add comments for what they do

2 Implement the code from the book

1. Implement the perceptron classifier and logistic regression classifier from the book in
your preferred IDE and run these, the full code for this program can be found at the
end of this document

2.1 Tasks

1. Modify the code so that instead of inputting the third and fourth columns of the iris
dataset (petal length and petal width), use two for loops to test each of the features
against each other

2. Using the results from the previous step, which two features give the best performance
on training a perceptron classifier, and which two give the best performance for a
logistic regression classifier?

3. Update the code to instead use all four features as an input to our classifier (you will
have to remove plotting for this)

4. As these are binary classifiers (can only distinguish between two classes), for a multi-
class prediction sklearn internally creates three classifiers, and then picks the classifier
that has the greatest output. We can see the weights for each of these by printing the
coef property, each row is the weights for a classifier and each column is the specific
weight for a feature. Looking at this for each classifier, which feature is most heavily
used to classify the third class, Iris-virginica

1

print(ppn.coef_)

[[-0.08174031 0.06591182 -0.1527238 -0.10880823]

[-0.13903492 -0.20727533 0.36510534 -0.31489372]

[-0.17799526 -0.12336785 0.96486444 0.41486971]]

5. In our program we have used a split of 70% of the data to train our classifiers and 30%
of the data to test our classifiers. using all four features, loop through the program
100 times with a range of testing data from 1 - 98% of the dataset (hint: look at
np.linspace()), save the accuracy from each of these runs for the logistic regression
classifier, and plot these accuracies. Where do we find peak performance?

3 Further Tasks

1. Use the classification report function from the sklearn.metrics module using the pa-
rameter target names=iris.target names to get a more detailed overview of the scores.
This uses a confusion matrix approach to the scores which is more widely used for
performance metrics, look into what a confusion matrix is.

2. Here we have defined our Scaler and classifiers separately, however this can be time
consuming when we are trying out many classifiers, bundle these together using a
Pipeline class from sklearn

3. We have used a set random state so that our programs are reproducible across machines.
In reality we would want to run the classifier multiple times with different values in our
training and test data. Run the logistic regression classifier with five different values
of random state and take the average of their accuracy

4. The above step is a commonly done task called k-folds cross validation, from the
sklearn module sklearn.cross validation import the cross val score function and the
KFold class, implement a KFold cross validator which shuffles the data 5 times and
use cross val score to return the average accuracy of these five.

4 Code for sklearn perceptron and logistic regression

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import Perceptron

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

from matplotlib.colors import ListedColormap

import matplotlib.pyplot as plt

import numpy as np

2

def plot_decision_regions(X, y, classifier,

test_idx=None, resolution=0.02):

setup marker generator and color map

markers = (’s’, ’x’, ’o’, ’^’, ’v’)

colors = (’red’, ’blue’, ’lightgreen’, ’gray’, ’cyan’)

cmap = ListedColormap(colors[:len(np.unique(y))])

plot the decision surface

x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1

x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),

np.arange(x2_min, x2_max, resolution))

Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

Z = Z.reshape(xx1.shape)

plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)

plt.xlim(xx1.min(), xx1.max())

plt.ylim(xx2.min(), xx2.max())

plot all samples

for idx, cl in enumerate(np.unique(y)):

plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],

alpha=0.8, c=cmap(idx),

marker=markers[idx], label=cl)

highlight test samples

if test_idx:

X_test, y_test = X[test_idx, :], y[test_idx]

plt.scatter(X_test[:, 0], X_test[:, 1],

c=’’, edgecolor=’black’, alpha=1.0,

linewidth=1, marker=’o’,

s=100, label=’test set’)

iris = datasets.load_iris()

X = iris.data[:, [2, 3]]

y = iris.target

split into training and test data

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.3, random_state=0)

define scaler

sc = StandardScaler()

3

sc.fit(X_train)

#scale data

X_train_std = sc.transform(X_train)

X_test_std = sc.transform(X_test)

Define and train perceptron

ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)

ppn.fit(X_train_std, y_train)

Define and train logistic regression

lr = LogisticRegression(C=1000.0, random_state=0)

lr.fit(X_train_std, y_train)

make predictions

y_pred_ppn = ppn.predict(X_test_std)

y_pred_lr = lr.predict(X_test_std)

print(’Misclassified samples for perceptron: {0}’

.format((y_test != y_pred_ppn).sum()))

print(’Perceptron Accuracy: {0:.2f}’

.format(accuracy_score(y_test, y_pred_ppn)))

print(’Misclassified samples for Logistic Regression: {0}’

.format((y_test != y_pred_lr).sum()))

print(’Logistic Regression Accuracy: {0:.2f}’

.format(accuracy_score(y_test, y_pred_lr)))

X_combined_std = np.vstack((X_train_std, X_test_std))

y_combined = np.hstack((y_train, y_test))

plot_decision_regions(X_combined_std,

y_combined,

classifier=ppn,

test_idx=range(105,150))

plot_decision_regions(X_combined_std,

y_combined,

classifier=lr,

test_idx=range(105, 150))

plt.xlabel(’petal length [standardized]’)

plt.ylabel(’petal width [standardized]’)

plt.legend(loc=’upper left’)

plt.show()

4

5

