
Principles of Computer Game
Design and Implementation

Lecture 15

We already learned

• Collision Detection
– two approaches (overlap test, intersection test)
– Low-level, mid-level, and high-level view

2

Collision Response

• What happens after a collision is detected?
1. Prologue
• Check if collision should be ignored
• Sound / visual effects

2. Collision
• Resolve collision

3. Epilogue
• Propagate the effects

– destroy object(s), play sound…

3

Collision Resolution

• Animation based
– An artist models collision
• A rocket hits a target…

– Motion-capture
• Sport games

• Physics based
– Generated by an algorithm
– Based on (more or less) realistic models

4

5

Recall: Classic Game Structure

• A convexity
• Starts with a single choice, widens to many

choices, returns to a single choice

Why Physics?

• Responsive behaviour
– Infinitely many possibilities

• For centauries people were describing the
world
– We can use the equations to model the world

• Can be hard
– Knowledge of physics
– “Real” physics is too expensive computationally

6

“Motion Science” in Games

• Kinematics
– Motion of bodies without considering

forces, friction, acceleration,…
– Not realistic

• Dynamics
– Interaction with forces and torques

7

Separate translation and rotation
• Particle physics
– A sphere with a perfect smooth,

frictionless surface. No rotation
– Interaction with forces and environment
• Position, Velocity, Acceleration

• Solid body physics
– Torques, angular velocity, angular

momentum

Keep It Simple

8

Continuous Motion

• Particles move in a “smooth way”
– Position as a function of time

P(t) is the position of P in the moment t
– The derivative

describes how P(t) changes over time
• Velocity (speed)

9

dP(t)

dt

V

P(t)

Discrete Particle Motion

• Uniform motion
– Nothing affects the

motion

• Gravitational pull

10

Integrators

• The process of computing the position of a
body based on forces and interaction with
other bodies in called integration

• A program that computes it is an integrator

11

1. Every body remains in a state of rest or
uniform motion unless it is acted on by an
external force

2. A body of mass m subject to force F
accelerates as described by

F = ma
3. Every action has an equal and opposite

reaction

Newton’s Laws

Vectors

12

Position and Velocity

Discrete physics
•

•

Continuous physics
•

• (maths)
Time per frame

P(t) = . . .

V(t) =
dP(t)

dt V(t) =
�P(t)

�t
=

Pi+1 �Pi

tpf

Pi+1 = Pi + tpf ·V(t)

Main loop iteration

13

V

Recall: Arbitrary Translation

• Every iteration update the
position

P = P + speed�tpf�U(t)

• U(t) - the direction of movement
– Depends on time!!

• speed is speed
• tpf is time per frame

Start

Initialise

Update Game

Draw Scene

Are we
done?

Cleanup

End

14

Velocity and Acceleration

Discrete physics
•

•

Continuous physics
•

• (maths)

Time per
frameMain loop iteration

a(t) =
dV(t)

dt
a(t) =

�V(t)

�t
=

Vi+1 �Vi

tpf

V(t) = . . . Vi+1 = Vi + tpf · a(t)

15

Vector3f velocity = new Vector3f(10,10,0);
Vector3f gravity = new Vector3f(0, -9.8f, 0);
…
public void simpleUpdate() {

velocity = velocity.add(gravity(tpf));
ag.move(velocity.mult(tpf));

}

Example: Gravitational Pull

• = 9.8 N/kg
•
•
Vi+1 = Vi + tpf · g
a(t) = g

Pi+1 = Pi + tpf ·Vi+1

g

16

Acceleration and Force

Newton’s second law: a body of mass m subject
to force F accelerates as described by

F(t) = ma(t)

a(t) = F(t)/m

Linear drag FD(t) = -bV(t)

Example: Engine thrust Fengine = kUV

Quadratic drag FQD(t) = -c|V(t)|2V (t)

Use more
often for
simplicity

17

Example: Pull + Drag

Vector3f force = velocityB.mult(-b);
accelerationB = gravity.add(force.divide(m));
velocityB =

velocityB.add(accelerationB.mult(tpf));
bg.move(velocityB.mult(tpf));

gFD

V

18

Fi+1 = �bVi

ai+1 = g+ Fi+1/m

Vi+1 = Vi + tpf · ai+1

Pi+1 = Pi + tpf ·Vi+1

Example: Pull + Drag + Thrust

Vector3f directionC = velocityC.normalize();
Vector3f forceC = velocityC.mult(-b).

add(directionC.mult(thrust));
accelerationC = gravity.add(forceC.divide(m));
velocityC = velocityC.add(accelerationC.mult(tpf));
cg.move(velocityC.mult(tpf));

gFD

V

19

thrust

Unit vector in the direction of V
Fi+1 = �bVi + kUV

ai+1 = g+ Fi+1/m

Vi+1 = Vi + tpf · ai+1

Pi+1 = Pi + tpf ·Vi+1

Simulation Recipe

• Add up all the forces acting on the object
– Gravity, drag, thrust, spring pull,…

• Represent the motion as discrete steps

20

ai+1 = g+ Fi+1/m

Vi+1 = Vi + tpf · ai+1

Pi+1 = Pi + tpf ·Vi+1

Euler steps

Rotation

• Rotation of a uniform (again simplification)
solid body can be described mathematically
– Speed vs angular speed
– Force vs torque

• Represent as discrete motion
• Use Euler steps to compute the rotation

matrix
• Combine with translation

21

Hard but doable

Accuracy of Simulation

• How accurate this simulation is?

• Does it matter?

– It’s all about illusion, if the behaviour looks right,
we do not care.

• But…

22

Physics: Prediction

• Consider the targeting problem: a gun takes
aim at a target
– Given: S – distance to the target
– Compute the bullet velocity vector
• Incomplete information

23
S

Targeting Problem (1)

• Consider horizontal and vertical components
of the velocity vector V

• Assume that
– the horizontal component is given and
– it does not change (no wind / drag)

• Flying time is

24
S

V

Vh

Vv

tflying =
S

Vh

Targeting Problem (2)

• Vertically, the motion is up and down

• Assume that
– the gun and target are levelled

• At the highest point
– time to the highest point is half the flying time

25

Vv(t) = Vv � gt

Vv(t) = 0

S

V

Vh

Vv

g

Targeting Problem (3)

• Thus,

26
S

V

Vh

Vv

g

0 = Vv � g(tflying)/2

tflying =
S

Vh

Vv =
gS

2Vh

HelloAiming

27

float distance = 100f;
bullet.setLocalTranslation(0, 0, 0);
target.setLocalTranslation(distance, 0, 0);
...
float vx = 20f;
float vy = (g*distance) / (2*vx);
velocity = new Vector3f(vx,vy,0);
...
pubic void simpleUpdate() {
if(bullet.getLocalTranslation().getY() >= 0) {
velocity = velocity.add(gravity.mult(tpf));
bullet.move(velocity.mult(tpf));

}
}

Run it with different vx!!

X-component of
velocity vector.
“Horizontal” speed.

• Work well when motion is slow (small
simulation steps) and forces are well-defined
– F, a and V remain same in the time interval

• Does not work well when
– Simulation steps are large
– Approximation errors accumulate
– F, a and V change rapidly over time

Euler Steps: Advantages and
Disadvantages

28

Inaccurate for serious applications (e.g. flying a real rocket)
Widely used in computer games for its simplicity

If Accuracy Matters

• Use other integration methods
– Typically, much more computationally demanding

• Cheat
– E.g. in our aiming example, if the bullet speed is

high, consider it travel along a straight line
– Adjust its position if necessary

29
S

Computer Science Approach:
Iterations

• Shoot at will
• See where it land
• If undershot, increase power
• If overshot, decrease power

30

But what will the user think?

