Principles of Computer Game
Design and Implementation

Lecture 15

We already learned

e Collision Detection
— two approaches (overlap test, intersection test)
— Low-level, mid-level, and high-level view

Collision Response

 What happens after a collision is detected?
1. Prologue

* Check if collision should be ignored
e Sound / visual effects

2. Collision
e Resolve collision
3. Epilogue

* Propagate the effects
— destroy object(s), play sound...

Collision Resolution

e Animation based

— An artist models collision
* Arocket hits a target...

— Motion-capture

* Sport games

Physics based
— Generated by an algorithm ,‘.'iff ot Dt
— Based on (more or less) realistic models " & = .

weAx iy E=me M-ALY

Recall: Classic Game Structure

* A convexity

e Starts with a single choice, widens to many
choices, returns to a single choice

\

\Q/\O/\

O
O/\O
\@<§

Why Physics?

* Responsive behaviour
— Infinitely many possibilities

* For centauries people were describing the
world
— We can use the equations to model the world

 Can be hard

— Knowledge of physics
— “Real” physics is too expensive computationally

“Motion Science” in Games

e Kinematics

— Motion of bodies without considering
forces, friction, acceleration,...

— Not realistic

* Dynamics

— Interaction with forces and torques

Keep It Simple

Separate translation and rotation
* Particle physics
— A sphere with a perfect smooth,
frictionless surface. No rotation
— Interaction with forces and environment
* Position, Velocity, Acceleration
* Solid body physics S|

— Torques, angular velocity, angular
momentum

Continuous Motion

* Particles move in a “smooth way”
— Position as a function of time
P(t) is the position of P in the moment t

P(t)
dt

describes how P(t) changes over time

— The derivative

* Velocity (speed)

P(t) ‘

Discrete Particle Motion

e Uniform motion
— Nothing affects the

motion

* Gravitational pull Q@%

Integrators

* The process of computing the position of a
body based on forces and interaction with
other bodies in called integration

* A program that computes it is an integrator

Newton’s Laws

1. Every body remains in a state of rest or
uniform motion unless it is acted on by an
external force

2. A body of mass m subject to force F

accelerates as descr% Vectors

F=ma

3. Every action has an equal and opposite
reaction

Continuous physics

* V)=

U

o
w
/N
i
N—r
]

Position and Velocity

dP(t)
dt

© V()

Discrete physics

_AP@_PMfPi

At tpf
¥

... (maths) ¢ P,y =P; + tpf- V(1)

/

Main loop iteration

Time per frame

TN

13

Recall: Arbitrary Translation

Every iteration update the
position

P = P + speed-tpf-U(t)

U(t) - the direction of movement
— Depends on time!!

speed is speed
tpf is time per frame

14

Velocity and Acceleration

Continuous physics Discrete physics
. dV(t) . AV(@) Vi -V,
alt) = =4, =N T
v]

* V(t)=...(maths) ¢ V, 1 =V, +1pf a(t)

/ Tlme per

Main loop iteration frame

Example: Gravitational Pull

- a(t) = g =9.8N/kg
*Viy1=V;+1ipf g gﬁ%
c P,y1=P;+tpf- Vin

Vector3f velocity = new Vector3f£(10,10,0);
Vector3f gravity = new Vector3f(0, -9.8f, 0);

public void simpleUpdate() {

velocity = velocity.add(gravity(tpf));
ag.move(velocity.mult(tpf));

Acceleration and Force

Newton’s second law: a body of mass m subject
to force F accelerates as described by

F(t) = ma(t)
¢
a(t) = F(t)/m

Use more
often for

Example: Engine thrust F, ... = kUv/ simplicity
Linear drag F(t) =-bV(t)

Quadratic drag Fqp(t) = -c| V(t)|°V (t)

Example: Pull + Drag
Fit1=—-bV,

air1=g+Fi1/m v
Vigi = Vi+ipf-ai /@/ m
0 g

P,o1 =P, +1tpf- Vi

Vector3f force = velocityB.mult(-b);
accelerationB = gravity.add(force.divide(m));
velocityB =
velocityB.add(accelerationB.mult (tpf));
bg.move(velocityB.mult (tpf));

Example: Pull + Drag + Thrust

-— Unit vector in the direction of V

Fi i = bV, + kUG
a1 =g+ Fip1/m

Vig1 =V, +ipf-a;4q F
P,i1=P;+1ipf- Vi

"4

thrust

Vector3f directionC = velocityC.normalize();
Vector3f forceC = velocityC.mult(-b).
add(directionC.mult (thrust));
accelerationC = gravity.add(forceC.divide(m));
velocityC = velocityC.add(accelerationC.mult(tpf));
cg.move(velocityC.mult(tpf));

Simulation Recipe

* Add up all the forces acting on the object

— Gravity, drag, thrust, spring pull,...

* Represent the motion as discrete steps

a1 =g+F;11/m
Vo1 =V, +tpf-a;11

P, 1=P;

—

tpf- Vig1 |

Euler steps

Rotation

Rotation of a uniform (again simplification)
solid body can be described mathematically

Use Euler steps to compute the rotation
matrix

— Speed vs angular speed
— Force vs torque

Represent as discrete motion

Combine with translation

Hard but doable

Accuracy of Simulation

e How accurate this simulation is?

e Does it matter?

— It’s all about illusion, if the behaviour looks right,
we do not care.

 But...

Physics: Prediction

* Consider the targeting problem: a gun takes
aim at a target
— Given: S — distance to the target
— Compute the bullet velocity vector

* Incomplete information

23

Targeting Problem (1)

* Consider horizontal and vertical components
of the velocity vector V

* Assume that
— the horizontal component is given and
— it does not change (no wind / drag)

* Flying time is S

24

Targeting Problem (2)

* Vertically, the motion is up and down

Vi (t) =V, —gt
* Assume that
— the gun and target are levelled
* At the highest point Vu(t) =0
— time to the highest point is half the flying time

25

Targeting Problem (3)

* Thus, 0 = Vv — g(tﬂying)/2

/

__

26

HelloAiming

float distance = 100f;
bullet.setLocalTranslation(0, 0, 0);
target.setLocalTranslation(distance, 0, 0);

float vx = 20f;é-/””—__—“\\\\\\\\\X{ompomynof

velocity new Vector3f(vx,vy,0); Horizontal” speed.

pubic void simpleUpdate() {
if(bullet.getLocalTranslation().getY() >=
velocity = velocity.add(gravity.mult (tpf)
bullet.move(velocity.mult(tpf));

}

0) {
) 7

Run it with different vx!!

Euler Steps: Advantages and
Disadvantages

 Work well when motion is slow (small
simulation steps) and forces are well-defined

— F, a and V remain same in the time interval
 Does not work well when
— Simulation steps are large

— Approximation errors accumulate

— F, a and V change rapidly over time

Inaccurate for serious applications (e.g. flying a real rocket)
Widely used in computer games for its simplicity

If Accuracy Matters

* Use other integration methods
— Typically, much more computationally demanding

* Cheat

— E.g. in our aiming example, if the bullet speed is
high, consider it travel along a straight line

— Adjust its position if necessary

Computer Science Approach:
Iterations

Shoot at will

See where it land

If undershot, increase power
If overshot, decrease power

But what will the user think?

