

Principles of Computer Game Design and Implementation

Lecture 15

We already learned

- Collision Detection
 - two approaches (overlap test, intersection test)
 - Low-level, mid-level, and high-level view

Collision Response

- What happens after a collision is detected?
 1. Prologue
 - Check if collision should be ignored
 - Sound / visual effects
 2. Collision
 - *Resolve collision*
 3. Epilogue
 - Propagate the effects
 - destroy object(s), play sound...

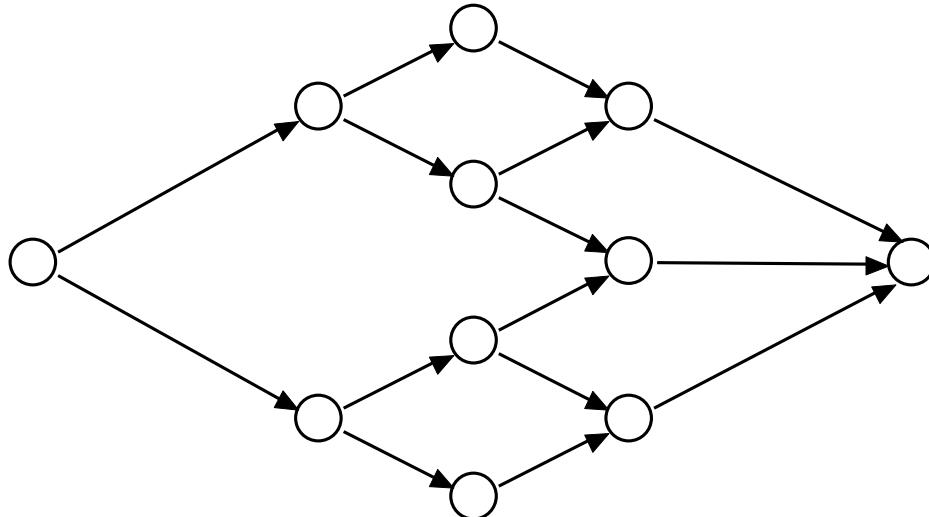
Collision Resolution

- Animation based
 - An artist models collision
 - A rocket hits a target...
 - Motion-capture
 - Sport games
- Physics based
 - Generated by an algorithm
 - Based on (more or less) realistic models

$a = \Delta v / \Delta t$	$F = ma$	$p = mv$
$v = v_0 + at$	$F = GMm/r^2$	$W = F \cdot \Delta s$
$\Delta s = v \cdot t + \frac{1}{2}at^2$	$F = mv^2/r$	$P = \Delta W / \Delta t$
$V = IR$	$F = kq_1 q_2 / r^2$	$K = \frac{1}{2}mv^2$
$P = VI$	$F = qv \times B$	$U = mgh$
$R = \sum R_i$	$\tau = r \times F$	$\Delta U = Q \cdot W$
$1/R = \sum 1/R_i$	$n = c/v$	$v = \lambda f$
$E = -N \frac{\Delta \Phi}{\Delta t}$	$n \sin \theta = n_0 \sin \theta_0$	$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$
$\Delta x = \Delta x / \gamma$	$E = mc^2$	$\Delta t = \Delta t / \gamma$

Recall: Classic Game Structure

- A convexity
- Starts with a single choice, widens to many choices, returns to a single choice

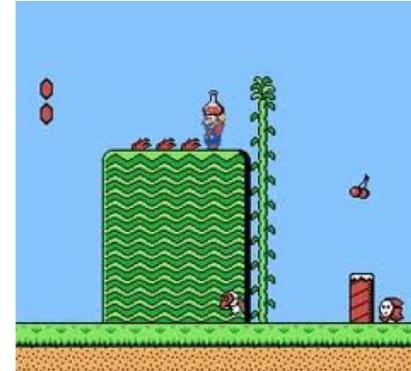


Why Physics?

- Responsive behaviour
 - Infinitely many possibilities
- For centuries people were *describing* the world
 - We can use the equations to *model* the world
- Can be hard
 - Knowledge of physics
 - “Real” physics is too expensive computationally

“Motion Science” in Games

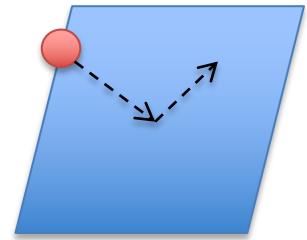
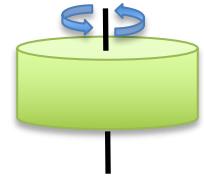
- Kinematics
 - Motion of bodies without considering forces, friction, acceleration,...
 - Not realistic
- Dynamics
 - Interaction with forces and torques



Keep It Simple

Separate translation and rotation

- Particle physics
 - A sphere with a perfect smooth, frictionless surface. No rotation
 - Interaction with forces and environment
 - Position, Velocity, Acceleration
- Solid body physics
 - Torques, angular velocity, angular momentum



Continuous Motion

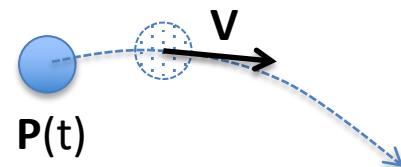
- Particles move in a “smooth way”
 - Position as a *function* of time
 $P(t)$ is the position of P in the moment t

- The *derivative*

$$\frac{d \mathbf{P}(t)}{dt}$$

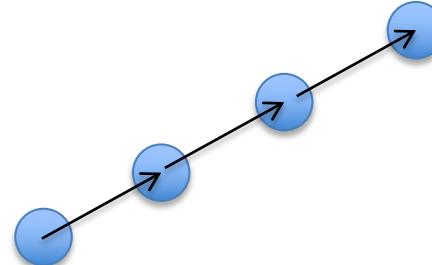
describes how $P(t)$ changes over time

- Velocity (speed)

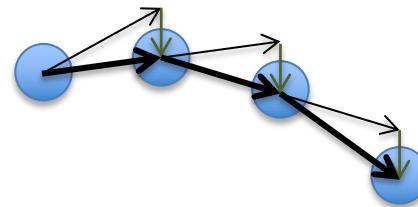


Discrete Particle Motion

- Uniform motion
 - Nothing affects the motion



- Gravitational pull



Integrators

- The process of computing the position of a body based on forces and interaction with other bodies is called *integration*
- A program that computes it is an *integrator*

Newton's Laws

1. Every body remains in a state of rest or uniform motion unless it is acted on by an external force
2. A body of mass m subject to force F accelerates as described by
$$F = ma$$
 Vectors
3. Every action has an equal and opposite reaction

Position and Velocity

Continuous physics

- $\mathbf{V}(t) = \frac{d \mathbf{P}(t)}{dt}$

- $\mathbf{P}(t) = \dots$ (maths)

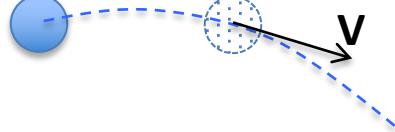
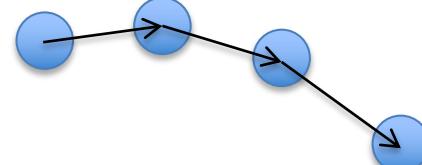
Discrete physics

- $\mathbf{V}(t) = \frac{\Delta \mathbf{P}(t)}{\Delta t} = \frac{\mathbf{P}_{i+1} - \mathbf{P}_i}{tpf}$

- $\mathbf{P}_{i+1} = \mathbf{P}_i + tpf \cdot \mathbf{V}(t)$

Main loop iteration

Time per frame



Recall: Arbitrary Translation

- Every iteration *update* the position

$$\mathbf{P} = \mathbf{P} + \text{speed} \cdot \text{tpf} \cdot \mathbf{U}(t)$$

- $\mathbf{U}(t)$ - the direction of movement
 - Depends on time!!
- *speed* is speed
- *tpf* is time per frame

Velocity and Acceleration

Continuous physics

- $\mathbf{a}(t) = \frac{d \mathbf{V}(t)}{dt}$

- $\mathbf{V}(t) = \dots$ (maths)

Main loop iteration

Discrete physics

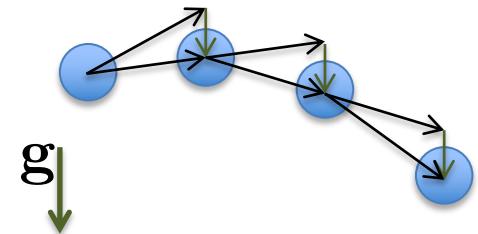
- $\mathbf{a}(t) = \frac{\Delta \mathbf{V}(t)}{\Delta t} = \frac{\mathbf{V}_{i+1} - \mathbf{V}_i}{tpf}$

- $\mathbf{V}_{i+1} = \mathbf{V}_i + tpf \cdot \mathbf{a}(t)$

Time per
frame

Example: Gravitational Pull

- $\mathbf{a}(t) = \mathbf{g} = 9.8 \text{ N/kg}$
- $\mathbf{V}_{i+1} = \mathbf{V}_i + tpf \cdot \mathbf{g}$
- $\mathbf{P}_{i+1} = \mathbf{P}_i + tpf \cdot \mathbf{V}_{i+1}$



```
Vector3f velocity = new Vector3f(10,10,0);
Vector3f gravity = new Vector3f(0, -9.8f, 0);
...
public void simpleUpdate() {
    velocity = velocity.add(gravity(tpf));
    ag.move(velocity.mult(tpf));
}
```

Acceleration and Force

Newton's second law: a body of mass m subject to force \mathbf{F} accelerates as described by

$$\mathbf{F}(t) = m\mathbf{a}(t)$$

$$\mathbf{a}(t) = \mathbf{F}(t)/m$$

Example: Engine thrust $\mathbf{F}_{\text{engine}} = k\mathbf{U}_V$

Use more often for simplicity

Linear drag $\mathbf{F}_D(t) = -b\mathbf{V}(t)$

Quadratic drag $\mathbf{F}_{\text{QD}}(t) = -c|\mathbf{V}(t)|^2\mathbf{V}(t)$

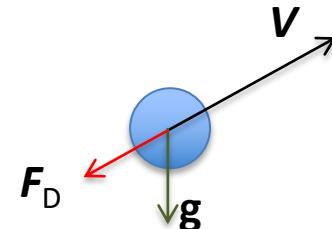
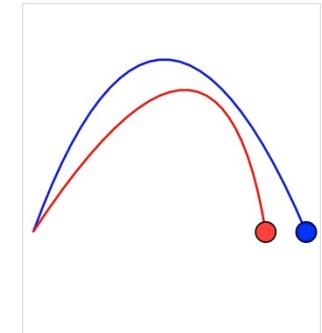
Example: Pull + Drag

$$\mathbf{F}_{i+1} = -b\mathbf{V}_i$$

$$\mathbf{a}_{i+1} = \mathbf{g} + \mathbf{F}_{i+1}/m$$

$$\mathbf{V}_{i+1} = \mathbf{V}_i + tpf \cdot \mathbf{a}_{i+1}$$

$$\mathbf{P}_{i+1} = \mathbf{P}_i + tpf \cdot \mathbf{V}_{i+1}$$



```
Vector3f force = velocityB.mult(-b);
accelerationB = gravity.add(force.divide(m));
velocityB =
    velocityB.add(accelerationB.mult(tpf));
bg.move(velocityB.mult(tpf));
```

Example: Pull + Drag + Thrust

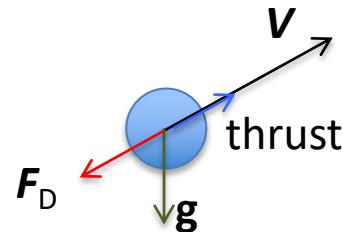
$$\mathbf{F}_{i+1} = -b\mathbf{V}_i + k\mathbf{U}_\mathbf{V}$$

Unit vector in the direction of \mathbf{V}

$$\mathbf{a}_{i+1} = \mathbf{g} + \mathbf{F}_{i+1}/m$$

$$\mathbf{V}_{i+1} = \mathbf{V}_i + tpf \cdot \mathbf{a}_{i+1}$$

$$\mathbf{P}_{i+1} = \mathbf{P}_i + tpf \cdot \mathbf{V}_{i+1}$$



```
Vector3f directionC = velocityC.normalize();
Vector3f forceC = velocityC.mult(-b).
                    add(directionC.mult(thrust));
accelerationC = gravity.add(forceC.divide(m));
velocityC = velocityC.add(accelerationC.mult(tpf));
cg.move(velocityC.mult(tpf));
```

Simulation Recipe

- Add up all the forces acting on the object
 - Gravity, drag, thrust, spring pull,...
- Represent the motion as discrete steps

$$\left. \begin{aligned} \mathbf{a}_{i+1} &= \mathbf{g} + \mathbf{F}_{i+1}/m \\ \mathbf{V}_{i+1} &= \mathbf{V}_i + tpf \cdot \mathbf{a}_{i+1} \\ \mathbf{P}_{i+1} &= \mathbf{P}_i + tpf \cdot \mathbf{V}_{i+1} \end{aligned} \right\} \text{Euler steps}$$

Rotation

- Rotation of a uniform (again simplification) solid body can be described mathematically
 - Speed vs angular speed
 - Force vs torque
- Represent as discrete motion
- Use Euler steps to compute the rotation matrix
- Combine with translation

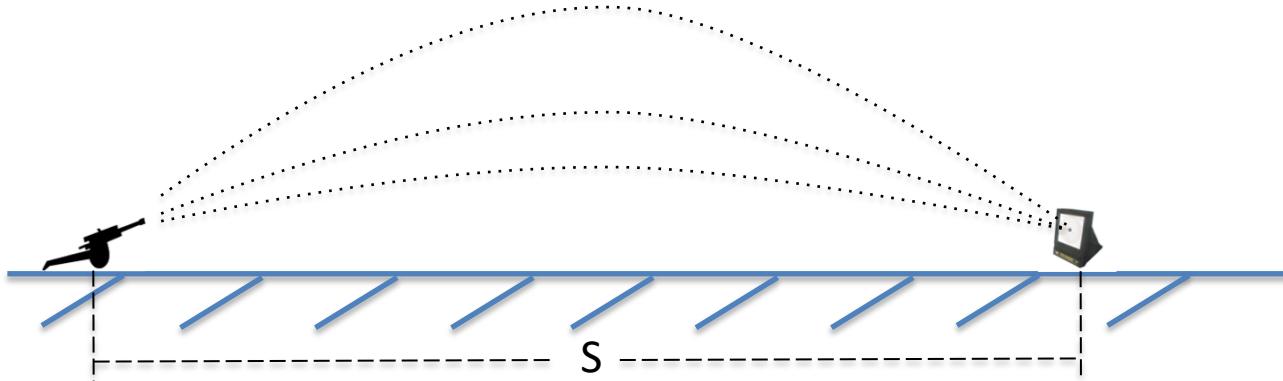
Hard but doable

Accuracy of Simulation

- How accurate this simulation is?
- Does it matter?
 - It's all about illusion, if the behaviour looks right, we do not care.
- But...

Physics: Prediction

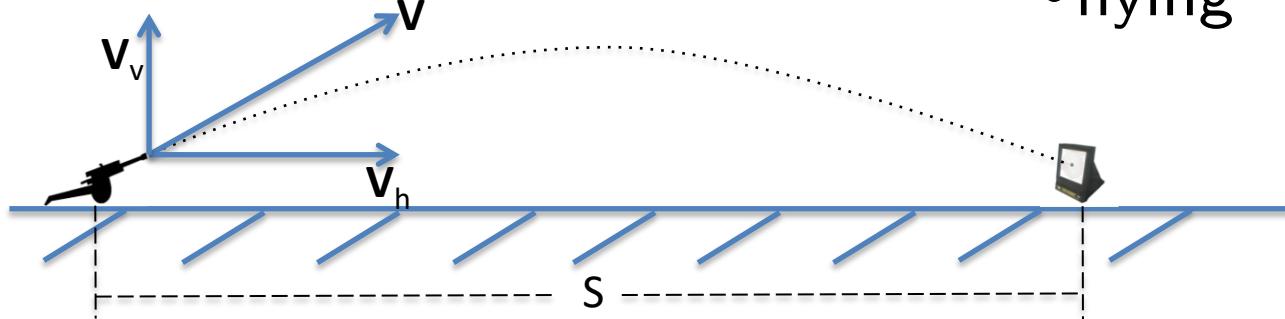
- Consider the targeting problem: a gun takes aim at a target
 - Given: S – distance to the target
 - Compute the bullet velocity vector
 - Incomplete information



Targeting Problem (1)

- Consider *horizontal* and *vertical* components of the velocity vector \mathbf{V}
- **Assume** that
 - the horizontal component is given and
 - it does not change (no wind / drag)
- Flying time is

$$t_{\text{flying}} = \frac{S}{V_h}$$

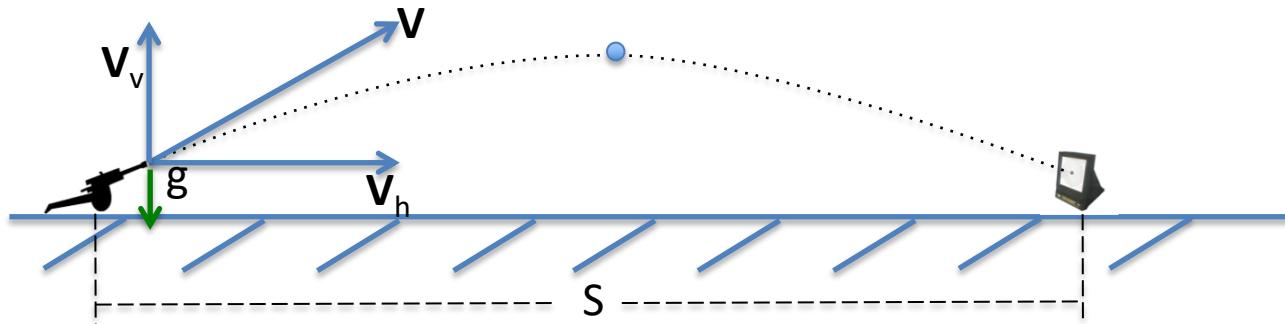


Targeting Problem (2)

- Vertically, the motion is *up* and *down*

$$V_v(t) = V_v - gt$$

- **Assume** that
 - the gun and target are levelled
- At the highest point $V_v(t) = 0$
 - time to the highest point is half the flying time

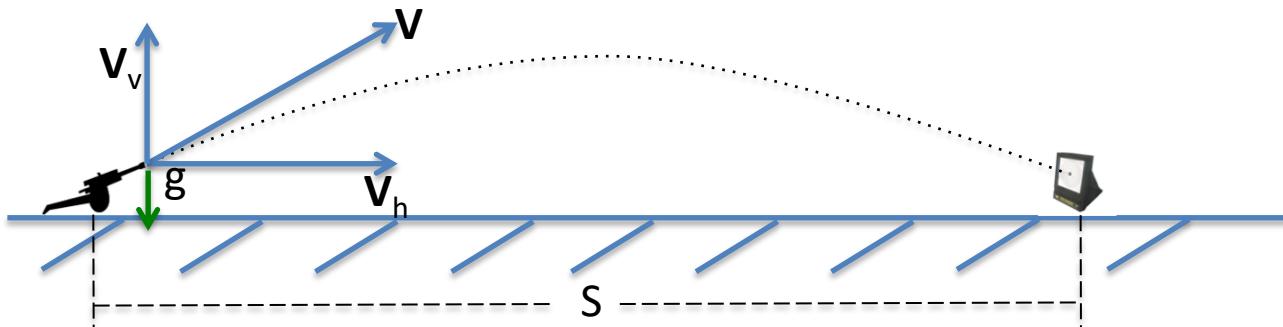


Targeting Problem (3)

- Thus, $0 = V_v - g(t_{\text{flying}})/2$

$$t_{\text{flying}} = \frac{S}{V_h}$$

$$V_v = \frac{gS}{2V_h}$$



HelloAiming

```
float distance = 100f;  
bullet.setLocalTranslation(0, 0, 0);  
target.setLocalTranslation(distance, 0, 0);  
...  
float vx = 20f; <  
float vy = (g*distance) / (2*vx);  
velocity = new Vector3f(vx,vy,0);  
...  
public void simpleUpdate() {  
    if(bullet.getLocalTranslation().getY() >= 0) {  
        velocity = velocity.add(gravity.mult(tpf));  
        bullet.move(velocity.mult(tpf));  
    }  
}
```

X-component of
velocity vector.
“Horizontal” speed.

Run it with different vx!!

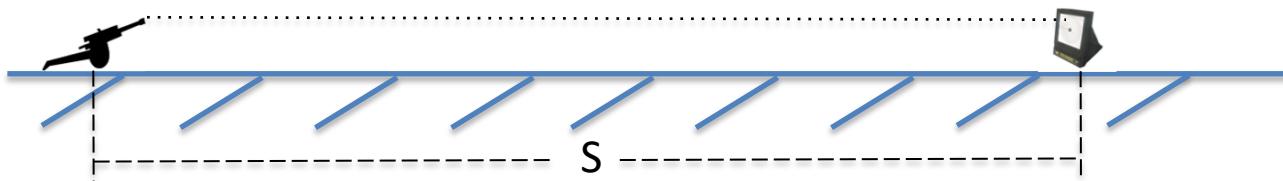
Euler Steps: Advantages and Disadvantages

- Work well when motion is slow (small simulation steps) and forces are well-defined
 - F , a and V remain same in the time interval
- Does not work well when
 - Simulation steps are large
 - Approximation errors accumulate
 - F , a and V change rapidly over time

Inaccurate for serious applications (e.g. flying a real rocket)
Widely used in computer games for its simplicity

If Accuracy Matters

- Use other integration methods
 - Typically, much more computationally demanding
- Cheat
 - E.g. in our aiming example, if the bullet speed is high, consider it travel along a straight line
 - Adjust its position if necessary



Computer Science Approach: Iterations

- Shoot at will
- See where it land
- If undershot, increase power
- If overshot, decrease power

But what will the user think?