

[Verification of](#page-98-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Verification of Robotics and Autonomous **Systems**

Xiaowei Huang, University of Liverpool

Joint work with Prof. Marta Kwiatkowska, University of Oxford

Alpine Verification Meeting, November 25, 2017

Outline

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

- $\mathcal{L}_{\mathcal{A}}$ Challenges: Robotics and Autonomous Systems
- Verification of Deep Learning [\[1\]](#page-98-1)
- Verification of Human-Robot Interaction [?]
- Conclusion

Robotics and Autonomous Systems

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Challenges](#page-2-0)

Robotics and Autonomous Systems

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Challenges](#page-2-0)

[Deep Learning](#page-7-0)

[Conclusion](#page-96-0)

Robotic and autonomous systems (RAS) are interactive, cognitive and interconnected tools that perform useful tasks in the real world where we live and work.

Automated Verification, a.k.a. Model Checking

Systems for Verification: Paradigm Shifting

System Properties

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Challenges](#page-2-0)

[Deep Learning](#page-7-0)

dependability (or reliability) $\overline{}$

human values, such as trustworthiness, morality, ethics, $\mathcal{L}_{\mathcal{A}}$ transparency, etc

Verification of Deep Learning

Human-Level Intelligence

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) Verification

Major problems and critiques

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) Verification

[Verification in](#page-47-0)

- \blacksquare un-safe, e.g., instability to adversarial examples
- hard to explain to human users $\mathcal{L}_{\mathcal{A}}$

Human Driving vs. Autonomous Driving

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) Verification

Traffic image from "The German Traffic Sign Recognition Benchmark"

[Conclusion](#page-96-0)

Deep learning verification (DLV)

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) Verification

Image generated from our tool Deep Learning Verification (DLV) 1

 $¹X$. Huang and M. Kwiatkowska. Safety verification of deep neural</sup> networks. CAV-2017. [Alpi](#page-12-0)[ne](#page-10-0) [Ve](#page-11-0)[rifi](#page-12-0)[ca](#page-6-0)[ti](#page-7-0)[on](#page-17-0) [M](#page-18-0)[e](#page-6-0)[eti](#page-7-0)[n](#page-46-0)[g,](#page-47-0) [No](#page-0-0)[vemb](#page-98-0)er 25, 2017 12

[Conclusion](#page-96-0) MELWOTKS. CAV-
Xiaowei Huang (Liverpool University) Verification of Robotics and Autonomous System

Safety Problem: Tesla incident

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) Verification

[Conclusion](#page-96-0)

Joshua Brown was killed when his Tesla Model S, which was operating in Autopilot mode, crashed into a tractor-trailer.

The car's sensor system, against a bright spring sky, failed to distinguish a large white 18-wheel truck and trailer crossing the highway.

Microsoft Chatbot

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) Verification

[Conclusion](#page-96-0)

WIRED

Artificial Intelligence

Microsoft's new chathot wants to hang out with millennials on **Twitter**

On 23 Mar 2016, Microsoft launched a new artificial intelligence chat bot that it claims will become smarter the more you talk to it.

Microsoft Chatbot

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) Verification

WIRED

Artificial Intelligence

Microsoft's new chathot wants to hang out with millennials on **Twitter**

after 24 hours ...

Safety Problem: Microsoft Chatbot

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) Verification

Safety Problem: Microsoft Chatbot

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) Verification

[Conclusion](#page-96-0)

 $\hat{\mathbf{m}}$ > Technology

Microsoft deletes 'teen girl' AI after it became a Hitlerloving sex robot within 24 hours

 $(f \text{ share }') (\blacktriangleright') (\textcircled{\textcircled{\#}}')$

Deep neural networks

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) Verification

all implemented with

Safety Definition: Deep Neural Networks

[Verification of](#page-0-0) Robotics and Autonomous Systems

Xiaowei

[Deep Learning](#page-7-0)

[Safety Definition](#page-18-0)

 \mathbb{R}^n be a vector space of images (points)

 $f: \mathbb{R}^n \to C$, where C is a (finite) set of class labels, models the human perception capability,

a neural network classifier is a function $\hat{f}(\mathsf{x})$ which approximates $f(x)$

Safety Definition: Deep Neural Networks

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

[Deep Learning](#page-7-0)

[Safety Definition](#page-18-0)

[Verification in](#page-47-0)

[Conclusion](#page-96-0)

A (feed-forward and deep) neural network N is a tuple (L, T, Φ) , where

- **■** $L = \{L_k | k \in \{0, ..., n\}\}$: a set of layers.
- \blacksquare $\top \subset L \times L$: a set of sequential connections between layers,
- $\bullet = \{\phi_k \mid k \in \{1, ..., n\}\}\colon$ a set of activation functions $\phi_k:D_{L_{k-1}}\to D_{L_k}$, one for each non-input layer.

Safety Definition: Illustration

Safety Definition: Traffic Sign Example

[Deep Learning](#page-7-0)

[Safety Definition](#page-18-0)

 \mathcal{A} .

Safety Definition: General Safety

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Safety Definition](#page-18-0)

[Conclusion](#page-96-0)

[General Safety] Let $\eta_k(\alpha_{x,k})$ be a region in layer L_k of a neural network N such that $\alpha_{x,k} \in \eta_k(\alpha_{x,k})$. We say that N is safe for input x and region $\eta_k(\alpha_{x,k})$, written as $N, \eta_k \models x$, if for all activations $\alpha_{v,k}$ in $\eta_k(\alpha_{x,k})$ we have $\alpha_{v,n} = \alpha_{x,n}$.

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) **[Challenges](#page-23-0)**

Challenge 1: continuous space, i.e., there are an infinite number of points to be tested in the high-dimensional space

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0)

[Challenges](#page-23-0)

[Conclusion](#page-96-0)

Challenge 2: The spaces are high dimensional

Note: a colour image of size $32*32$ has the $32*32*3 =$ 784 dimensions.

Note: hidden layers can have many more dimensions than input layer.

[Verification of](#page-0-0) Robotics and **Autonomous Systems**

[Deep Learning](#page-7-0)

[Challenges](#page-23-0)

Challenge 3: the functions f and \hat{f} are highly non-linear, i.e., safety risks may exist in the pockets of the spaces

Figure: Input Layer and First Hidden Layer

 \sim

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Challenges](#page-23-0)

Challenge 4: not only heuristic search but also verification

 \mathcal{A} .

Approach 1: Discretisation by Manipulations

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

[Verification in](#page-47-0)

[Conclusion](#page-96-0)

Define manipulations $\delta_k: D_{L_k} \to D_{L_k}$ over the activations in the vector space of layer k .

Figure: Example of a set $\{\delta_1, \delta_2, \delta_3, \delta_4\}$ of valid manipulations in a 2-dimensional space

ladders, bounded variation, etc

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

[Conclusion](#page-96-0)

Figure: Examples of ladders in region $\eta_k(\alpha_{x,k})$. Starting from $\alpha_{x,k} = \alpha_{x_0,k}$, the activations $\alpha_{x_1,k} \dots \alpha_{x_i,k}$ form a ladder such that each consecutive activation results from some valid manipulation δ_k applied to a previous activation, and the final activation $\alpha_{x_i,k}$ is outside the region $\eta_k(\alpha_{x,k})$.

Safety wrt Manipulations

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

[Safety wrt Manipulations] Given a neural network N, an input x and a set Δ_k of manipulations, we say that N is safe for input x with respect to the region η_k and manipulations Δ_k , written as $N, \eta_k, \Delta_k \models x$, if the region $\eta_k(\alpha_{x,k})$ is a 0-variation for the set $\mathcal{L}(\eta_k(\alpha_{x,k}))$ of its ladders, which is complete and covering.

Theorem

 (\Rightarrow) N, $\eta_k \models x$ (general safety) implies N, η_k , $\Delta_k \models x$ (safety wrt manipulations).

[Conclusion](#page-96-0)

Minimal Manipulations

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

[Conclusion](#page-96-0)

Define minimal manipulation as the fact that there does not exist a finer manipulation that results in a different classification.

Theorem

 (\Leftarrow) Given a neural network N, an input x, a region $\eta_k(\alpha_{k,k})$ and a set Δ_k of manipulations, we have that $N, \eta_k, \Delta_k \models x$ (safety wrt manipulations) implies $N, \eta_k \models x$ (general safety) if the manipulations in Δ_k are minimal.

Approach 2: Layer-by-Layer Refinement

Approach 2: Layer-by-Layer Refinement

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

[Conclusion](#page-96-0)

Figure: Refinement in general safety and safety wrt manipulations

Approach 2: Layer-by-Layer Refinement

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

Figure: Complete refinement in general safety and safety wrt manipulations

Approach 3: Exhaustive Search

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

Fig: Hill Climbing : Local Search

Figure: exhaustive search (verification) vs. heuristic search

Approach 4: Feature Discovery

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) [Approaches](#page-27-0)

[Conclusion](#page-96-0)

Natural data, for example natural images and sound, forms a high-dimensional manifold, which embeds tangled manifolds to represent their features.

Feature manifolds usually have lower dimension than the data manifold, and a classification algorithm is to separate a set of tangled manifolds.

Approach 4: Feature Discovery

Experimental Results: MNIST

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) [Experimental](#page-37-0) **Results**

Image Classification Network for the MNIST Handwritten Numbers 0 – 9

- 点

Total params: 600,810

Experimental Results: MNIST

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) [Experimental](#page-37-0) Results

Xiaowei Huang (Liverpool University) [Verification of Robotics and Autonomous Systems](#page-0-0)

Experimental Results: GTSRB

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Experimental](#page-37-0) **Results**

Image Classification Network for The German Traffic Sign Recognition Benchmark

Total params: 571,723

Experimental Results: GTSRB

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) [Experimental](#page-37-0) **Results**

"stop" to "30m speed limit"

"80m speed limit" to "30m speed limit"

"go right" to "go straight"

Experimental Results: GTSRB

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0) [Experimental](#page-37-0) Results

[Conclusion](#page-96-0)

overtaking $($ pro no hibitory) to go straight (mandatory)

restriction ends 80 (other) to speed limit 80 (prohibitory)

priority at next intersection (danger) to speed limit 30 (prohibitory)

limit 50 (prospeed hibitory) to stop (other)

overtaking (trucks) no (prohibitory) to speed limit 80 (prohibitory)

uneven road (danger) to traffic signal (danger)

road narrows (danger) to construction (danger)

overtaking $($ pro no hibitory) to restriction (overtaking ends (trucks)) (other)

danger (danger) to school crossing (danger)

Experimental Results: CIFAR-10

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) [Experimental](#page-37-0) **Results**

Image Classification Network for the CIFAR-10 small images

- 点

Total params: 1,250,858

Experimental Results: CIFAR-10

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) [Experimental](#page-37-0) Results

automobile to bird

airplane to dog

truck to frog

ship to truck

automobile to frog

airplane to deer

truck to cat

horse to cat

ship to bird

horse to automobile

automobile to airplane automobile to horse

airplane to truck

airplane to cat

ship to airplane

Experimental Results: imageNet

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0) [Experimental](#page-37-0) Results

Image Classification Network for the ImageNet dataset, a large visual database designed for use in visual object recognition software research.

Total params: 138,357,544

[Conclusion](#page-96-0)

 \mathbf{v} and \mathbf{v}

Experimental Results: ImageNet

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0) [Experimental](#page-37-0) **Results**

labrador to life boat

boxer to rhodesian ridgeback

rhodesian ridgeback to malinois

great pyrenees to kuvasz

Next Step: Hybrid Systems

Verification in human-robot interaction

Mental process in human model

Social trust in human-robot interaction

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

[Motivation](#page-48-0)

[Conclusion](#page-96-0)

Trust, one of the essential human mental attitude, is a critical part of every human interaction.

Social trust in human-robot interaction

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Motivation](#page-48-0)

Question: what is the level of trust we have on a self-driving car to send our kids to the school?

Question: what is the level of trust we have on a self-driving car to let it make decision in a critical situation?

 \sim

Tesla incident: importance of correct calibration of trust

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Motivation](#page-48-0)

Joshua Brown was killed when his Tesla Model S, which was operating in Autopilot mode, crashed into a tractor-trailer. He was allegedly watching a movie when the incident occurs.

Google Car incident: importance of correct calibration of trust

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

- [Deep Learning](#page-7-0)
-

[Motivation](#page-48-0)

[Conclusion](#page-96-0)

MailOnline

Home | News | U.S. | Sport | TV&Showbiz | Australia | Femail | Health | Science Latest Headlines | Science | Pictures | Discounts

Can self-driving cars cope with illogical humans? Google car crashed because bus driver didn't do what it expected

• National Highway Traffic Safety Administration is collecting information

"Our car was making an assumption about what the other car was going to do," said Chris Urmson, head of Google's self-driving project, speaking at the SXSW festival in Austin.

Definition of social trust

■ The willingness of a party to be vulnerable to the actions of another party based on the expectation that the other will perform a particular action important to the trustor, irrespective of the ability to monitor or control that party.

A subjective evaluation of a truster on a trustee about something in particular, e.g., the completion of a task.

[Mayer, Davis, and Schoorman 1995]

What is (social) trust?

[Hardin 2002]

...

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Motivation](#page-48-0)

[Conclusion](#page-96-0)

Stochastic Multiplayer Game

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Stochastic [Multiplayer](#page-54-0) Game

[Conclusion](#page-96-0)

A stochastic multiplayer game (SMG) is a tuple $\mathcal{M} = (Ags, S, S_{init}, \{Act_A\}_{A \in Ags}, T, L)$, where:

- Ags = $\{1, ..., n\}$ is a finite set of agents,
- \blacksquare S is a finite set of states.
- $S_{init} \subseteq S$ is a set of initial states,
- \blacksquare Act_A is a finite set of actions for the agent A,
- \blacksquare T : $S \times Act \rightarrow \mathcal{D}(S)$ is a (partial) probabilistic transition function, where $Act = \times_{A \in Ags} Act_A$ and
- L : $S \rightarrow \mathcal{P}(AP)$ is a labelling function mapping each state to a set of atomic propositions taken from a set AP.

Path, Action Strategy, Strategy Profile, etc.

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

- [Deep Learning](#page-7-0)
-

[Verification in](#page-47-0)

Stochastic [Multiplayer](#page-54-0) Game

[Conclusion](#page-96-0)

- A (history-dependent and stochastic) action strategy σ_A of agent $A \in Ags$ in an SMG M is a function σ_A : F $\mathrm{Path}^{\mathcal{M}} \to \mathcal{D}(Act_A)$, such that for all $a_A \in Act_A$ and finite paths ρ it holds that $\sigma_A(\rho)(a_A) > 0$ only if $a_A \in \text{Act}_A(\text{last}(\rho)).$
- A strategy profile σ_C for a set C of agents is a vector of action strategies $\times_{A \in \mathcal{C}} \sigma_A$, one for each agent $A \in \mathcal{C}$.
- We let Π_A be the set of agent A's strategies, Π_C be the set of strategy profiles for the set of agents C, and Π be the set of strategy profiles for all agents.

Strategy Induced DTMC

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Stochastic [Multiplayer](#page-54-0) Game

[Conclusion](#page-96-0)

Given a path ρs which has s as its last state, a strategy $\sigma \in \Pi$. and a formula ψ , we write

$$
\mathit{Prob}_{\mathcal{M}, \sigma, \rho s}(\psi) \stackrel{\text{\tiny def}}{=} \Pr_{\sigma}^{\mathcal{M}}\{\delta \in \mathrm{IPath}^\mathcal{M}_\mathcal{T}(s) \mid \mathcal{M}, \rho s, \delta \models \psi\}
$$

for the probability of implementing ψ on a path ρs when a strategy σ applies. Based on this, we define

$$
\begin{array}{rcl}\n\text{Prob}_{\mathcal{M},\rho}^{\text{min}}(\psi) & \stackrel{\text{def}}{=} \inf_{\sigma \in \Pi} \text{Prob}_{\mathcal{M},\sigma,\rho}(\psi), \\
\text{Prob}_{\mathcal{M},\rho}^{\text{max}}(\psi) & \stackrel{\text{def}}{=} \sup_{\sigma \in \Pi} \text{Prob}_{\mathcal{M},\sigma,\rho}(\psi)\n\end{array}
$$

Semantics of Probabilistic Formula

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Stochastic [Multiplayer](#page-54-0) Game

 $\mathcal{M},\rho \models \mathtt{P}^{\bowtie q} \psi$ if $\mathit{Prob}^{\mathit{opt}(\bowtie)}_{\mathcal{M},\rho}(\psi) \bowtie q,$ where

$$
opt(\bowtie) = \left\{ \begin{array}{ll} \min & \text{when } \bowtie \in \{\geq, >\} \\ \max & \text{when } \bowtie \in \{\leq, <\} \end{array} \right.
$$

 $+$ Partial Observation

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Cognitive

[Mechanism](#page-58-0)

[Conclusion](#page-96-0)

A partially observable stochastic multiplayer game (POSMG) is a tuple $\mathcal{M} = (Ags, S, S_{init}, \{Act_A\}_{A \in Ags}, T,$ $L, \{O_A\}_{A \in Ags}, \{obs_A\}_{A \in Ags}$), where

- $(Ags, S, S_{init}, \{Act_A\}_{A\in Ags}, T, L)$ is an SMG,
- \Box O_A is a finite set of observations for agent A, and
- obs_A : $S \longrightarrow O_A$ is a labelling of states with observations for agent A.

Cognitive Mechanism

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

Stochastic multiplayer game with cognitive dimension (SMG $_Q$)</sub> extends POSMG with

- cognitive state,
- cognitive mechanism, and
- cognitive strategy.

For an agent A, we use $Goal_A$ to denote its set of goals and Int_A to denote its set of intentions.

 $+$ Cognitive Strategy

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

- [Deep Learning](#page-7-0)
-

[Verification in](#page-47-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

A stochastic multiplayer game with cognitive dimension (SMG_Q) is a tuple $\mathcal{M} = (Ags, S, S_{init}, \{Act_A\}_{A \in Ags}, T, L,$ $\{O_A\}_{A \in Ags}, \{obs_A\}_{A \in Ags}, \{\Omega_A\}_{A \in Ags}, \{\pi_A\}_{A \in Ags}\},$ where

- $\Omega_A = \langle \text{Goal}_A, \text{Int}_A \rangle$ is the *cognitive mechanism* of agent A, consisting of
	- **a** a legal goal function $Goal_A : S \rightarrow \mathcal{P}(\mathcal{P}(Goal_A))$ and
	- **a** legal intention function $Int_A : S \to \mathcal{P}(Int_A)$, and

 $\pi_{\mathcal{A}} = \langle \pi^{\mathcal{B}}_{\mathcal{A}}$ A^g, π_A^i is the *cognitive strategy* of agent A, consisting of

- a goal strategy $\pi^\mathcal{g}_A:\mathrm{FPath}^\mathcal{M}\to \mathcal{D}(\mathcal{P}(\mathit{Goal}_A))$ and
- an intention strategy $\pi_{\mathcal{A}}^i:\mathrm{FPath}^{\mathcal{M}}\rightarrow \mathcal{D}(\mathit{Int}_{\mathcal{A}}).$

Cognitive Transition

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

In addition to the temporal dimension of transitions $s{\longrightarrow} \frac{a}{l} s',$ we also distinguish a *cognitive* dimension of transitions $s{\longrightarrow_C} s'$, which corresponds to mental reasoning processes.

- Given a state s and a set of agent A's goals $x \subseteq \text{Goal}_A$, we write $A.g(s, x)$ for the state obtained from s by substituting agent's goals with x . Similar notation A.i(s, x) is used for intention change when $x \in Int_A$.
- Alternatively, we may write $s {\longrightarrow}^{{\overline{A}} \cdot {\overline{s}} \cdot x}_{\overline{C}} s'$ if $s' = A . g(s,x)$ contains the goal set x for A and $\overline{s} \rightarrow_C^{A,i,x} s'$ if $s' = A.i(s, x)$ contains the intention x for A.

Running Example: Trust Game

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

A simple trust game from [Kuipers2016], in which there are two agents, Alice and Bob. At the beginning, Alice has 10 dollars and Bob has 5 dollars. If Alice does nothing, then everyone keeps what they have. If Alice invests her money with Bob, then Bob can turn the 15 dollars into 40 dollars. After having the investment yield, Bob can decide whether to share the 40 dollars with Alice. If so, each will have 20 dollars. Otherwise, Alice will lose her money and Bob gets 40 dollars.

Running Example: Trust Game

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

Table: Payoff of a simple trust game

Trust Game: Previous Approach

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

It is argued that the single numerical value as the payoff of the trust game is an over-simplification. A more realistic utility should include both the payoff and other hypotheses, including trust.

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

For Alice, we let

- Goal_{Alice} = {passive, active} be two goals which represent her attitude towards investment.
- Int_{Alice} = {passive, active}, and
- **strategy** σ_{passive} to implement her *passive* intention, and σ_{active} to implement her *active* intention.

Table: Strategies for Alice

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

- [Deep Learning](#page-7-0)
-

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

For Bob, we let

- Goal_{Bob} = {*investor, opportunist*} be a set of goals,
- $Int_{Bob} = \{share, keep\}$, and
- let his intentions be associated with action strategies: σ_{share} , in which Bob shares the investment yield with Alice, and σ_{keep} , in which Bob keeps all the money for himself.

Table: Strategies for Bob

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

Cognitive

[Mechanism](#page-58-0) [Conclusion](#page-96-0) We extend the trust game G by expanding state to additionally include cognitive state. In particular, each state can now be represented as a tuple

 $(a_{Alice}, a_{Bob}, g_{SAlice}, g_{SBob}, i_{SAlice}, i_{SBob}),$

such that a_{Alice} and a_{Bob} are last actions executed by agents and $gs_{Alice} \subseteq Goal_{Alice} \cup \{\perp\}, g_{SBob} \subseteq Goal_{Bob} \cup \{\perp\},$ *is_{Alice}* ∈ *Int_{Alice}* ∪ {⊥}, and *is_{Bob}* ∈ *Int_{Bob}* ∪ {⊥} is the cognitive state.

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

Fig. 2. Trust game with cognitive dimension

 \sim

Assumptions

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

- (Uniformity Assumption) ...
- $\mathcal{L}_{\mathcal{A}}$ (Deterministic Behaviour Assumption) An SMG_O M satisfies the Deterministic Behaviour Assumption if each agent's cognitive state deterministically decides its behaviour in terms of selection of its next local action. In other words, agent's cognitive state induces a pure action strategy that agent follows.

 $+$ Cognitive Modalities

[Verification of](#page-0-0) Robotics and Autonomous Systems

Xiaowei

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

The syntax of the logic, named PCTL_Ω^* , is as follows.

$$
\phi ::= p | \neg \phi | \phi \lor \phi | \forall \psi | P^{\bowtie q} \psi | \mathbb{G}_A \phi | \mathbb{I}_A \phi | \mathbb{C}_A \phi
$$

$$
\psi ::= \phi | \neg \psi | \psi \lor \psi | \bigcirc \psi | \psi \mathbb{U} \psi
$$

where $p \in AP$, $A \in Ags$, $\bowtie \in \{ \langle \langle \rangle, \rangle, \rangle \}$, and $q \in [0, 1]$.

- $\mathcal{M}, \rho \mathsf{s} \models \mathbb{G}_A \phi$ if $\forall \mathsf{x} \in \mathsf{supp}(\pi^\mathcal{B}_\mathcal{A})$ $A^g_A(\rho s))$ $\exists s':\ s {\longrightarrow_C^A}{}^g.{}^s s'$ and \mathcal{M}, ρ ss' $\models \phi$,
- $\mathcal{M}, \rho\mathsf{s}\models \mathbb{I}_A\phi \; \text{if}\; \forall \mathsf{x}\in \mathsf{supp}(\pi_A^i(\rho\mathsf{s}))\, \exists \mathsf{s}'\in \mathsf{S} \, : \, \mathsf{s}{\longrightarrow_C^{A.i.\mathsf{x}}}\mathsf{s}'$ and \mathcal{M}, ρ ss' $\models \phi$,
- $\mathcal{M}, \rho\mathsf{s}\models \mathbb{C}_\mathcal{A} \phi \text{ if } \exists \mathsf{x}\in \mathit{Int}_\mathcal{A}(\mathsf{s}) \, \exists \mathsf{s}'\in \mathcal{S}:\ \mathsf{s}\text{ and }$ \mathcal{M}, ρ ss' $\models \phi$.

Example Formulas

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

 $\phi_1 = \mathbb{G}_{Alice} P^{\leq 0.9} \diamondsuit a_{Alice} =$ invest expresses that regardless of Alice changing her goals, the probability of her investing in the future is no greater than 90%.

- $\phi_2 = \mathbb{C}_{Bob} P^{\leq 0} \circ a_{Bob} =$ keep states that Bob has a legal intention which ensures that he will not keep the money as his next action.
- $\Box \phi_3 = \Box$ Alice $\exists \Diamond$ richerAlice, Bob, where richerAlice, Bob is an atomic proposition with obvious meaning, states that Alice can find an intention such that it is possible to eventually reach a state where Alice has more money than Bob. Finally, the formula
- $\Box \phi_4 = \overline{\Box_{Alice}} \exists \Diamond \mathbb{G}_{Bob} \forall \Diamond \neg$ richer Alice, Bob expresses that Alice can find an intention such that it is possible to reach a state such that, for all possible Bob's goals, the game will always reach a state in which Bo[b](#page-70-0) i[s](#page-72-0) [n](#page-70-0)[o p](#page-71-0)[o](#page-72-0)[o](#page-57-0)[r](#page-58-0)[e](#page-79-0)[r](#page-80-0) [t](#page-46-0)[h](#page-47-0)[a](#page-95-0)[n](#page-96-0) [A](#page-0-0)[lic](#page-98-0)e.

Trust Game: Cognitive Modelling

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

Fig. 2. Trust game with cognitive dimension

 \sim

 $+$ Preference

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Cognitive [Mechanism](#page-58-0)

[Conclusion](#page-96-0)

An autonomous stochastic multi-agent system (ASMAS) is a tuple $\mathcal{M} = (Ags, S, S_{init}, \{Act_A\}_{A \in Ags}, T, L, \{O_A\}_{A \in Ags},$ $\{obs_A\}_{A \in Ags}$, $\{\Omega_A\}_{A \in Ags}$, $\{\pi_A\}_{A \in Ags}$, $\{p_A\}_{A \in Ags}$), where p_A is a set of preference functions of agent $A \in Ags$, defined as

 $p_A \stackrel{\text{\tiny def}}{=} \{gp_{A,B}, \textit{ip}_{A,B} \mid B \in Ags \text{ and } B \neq A \},$

where:

- **g** $g_{\text{P}_{\text{A},\text{B}}}$: $S \rightarrow \mathcal{D}(\mathcal{P}(\text{Goal}_B))$ is a goal preference function of A over B such that, for any state s and $x \in \mathcal{P}(Goal_B)$, we have $gp_{A,B}(s)(x) > 0$ only if $x \in Goal_B(s)$, and
- \blacksquare ip_{A,B} : $S \rightarrow \mathcal{D}(Int_B)$ is an intention preference function of A over B such that, for any state s and $x \in Int_B$, we have $ip_{A,B}(s)(x) > 0$ only if $x \in Int_B(s)$.

Trust Game: Preference-induced DTMC

Trust Game: Preference-induced DTMC

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

[Deep Learning](#page-7-0)

[Verification in](#page-47-0) **Cognitive** [Mechanism](#page-58-0)

$$
\textit{gp}_{Bob,Alice}(s_0) = \langle \textit{passive} \mapsto 1/3, \textit{active} \mapsto 2/3 \rangle
$$

indicates that Bob believes Alice is more likely to be active than passive. Setting

$$
\textit{gp} \textit{Alice}, \textit{Bob}(s_{x}) = \langle \textit{investor} \mapsto 1/2, \textit{opportunist} \mapsto 1/2 \rangle,
$$

for $x \in \{1, 2\}$, represents that Alice has no prior knowledge regarding Bob's mental attitudes. We may set

$$
ip_{Alice, Bob}(s_x) = \langle share \mapsto 3/4, keep \mapsto 1/4 \rangle \quad \text{ for } x \in \{8, 12\},
$$

$$
ip_{Alice, Bob}(s_x) = \langle share \mapsto 0, keep \mapsto 1 \rangle \quad \text{ for } x \in \{10, 14\}
$$

to indicate that Alice knows that Bob will keep the money when he is an *opportunist*, but she thinks it's quite likely that he will share his profi[t](#page-74-0) when he is an *[inv](#page-74-0)[es](#page-76-0)t[or](#page-75-0)*. Alpine [Ve](#page-75-0)[rifi](#page-76-0)[ca](#page-57-0)[ti](#page-58-0)[on](#page-79-0) [M](#page-80-0)[e](#page-46-0)[eti](#page-47-0)[n](#page-95-0)[g,](#page-96-0) [No](#page-0-0)[vemb](#page-98-0)er 25, 2017 76

Trust Game: Preference-induced DTMC

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

Cognitive [Mechanism](#page-58-0)

 $Pr_{Alice}(\rho_1) = gp_{Alice, Bob}(s_1)$ (investor) \cdot ($\sigma_{\text{passive}}(s_0s_1s_3)$ (invest) \cdot T(s_3 , invest)(s_8)) \cdot ip_{Alice}, $B_{\text{ob}}(s_8)$ (share) \cdot ($\sigma_{share}(s_0s_1s_3s_8s_{15})$ (share) \cdot T(s₁₅, share)(s₂₄)) $=\frac{1}{2}$ $\frac{1}{2} \cdot (\frac{3}{10})$ $\frac{3}{10} \cdot 1 \cdot \frac{3}{4}$ $\frac{3}{4} \cdot (1 \cdot 1) = \frac{9}{80},$

Belief

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

The belief function be_A : $OPath_A \rightarrow \mathcal{D}(FPath^{\mathcal{M}})$ is given by

 $\vert \ \ \vert$ $\rho' \in$ class (o)

 $C_{\rho'}$).

be ${}_{\mathcal{A}}(\mathfrak{o})(\rho)=\mathrm{Pr}^{\mathcal{M}}_{\mathcal{A}}(\mathcal{C}_{\rho}\mid)$

Trust Game: Belief Computation

Trust Game: Belief Computation

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

Cognitive [Mechanism](#page-58-0)

$$
be_{Bob}(o, \rho_1) = Pr_{Bob}^{\mathcal{G}}(C_{\rho_1} \mid \bigcup_{\rho \in class(o)} C_{\rho})
$$

=
$$
\frac{Pr_{Bob}^{\mathcal{G}}(C_{\rho_1})}{Pr_{Bob}^{\mathcal{G}}(C_{\rho_1}) + Pr_{Bob}^{\mathcal{G}}(C_{\rho_2})}
$$

=
$$
\frac{g_{BBob, Alice}(s_0)(passive)}{g_{BBob, Alice}(s_0)(passive) + g_{BBob, Alice}(s_0)(active)}
$$

=
$$
\frac{1}{3}.
$$

 $+$ Trust: A Temporal Logic of Trust 2

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

A Temporal [Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

The syntax of the logic PRTL^{*} is as follows.

$$
\phi ::= p | \neg \phi | \phi \vee \phi | \forall \psi | P^{\bowtie q} \psi | \mathbb{G}_A \phi | \mathbb{I}_A \phi | \mathbb{C}_A \phi |
$$

$$
\mathbb{B}_A^{\bowtie q} \psi | \mathbb{CT}_{A,B}^{\bowtie q} \psi | \mathbb{DT}_{A,B}^{\bowtie q} \psi
$$

$$
\psi ::= \phi | \neg \psi | \psi \vee \psi | \bigcirc \psi | \psi \mathbb{U} \psi | \square \psi
$$

where $p \in AP$, $A, B \in Ags$, $\bowtie \in \{<, \leq, >, \geq\}$, and $q \in [0, 1]$.

 $2X$. Huang and M. Kwiatkowska. Reasoning about cognitive trust in stochastic multiagent systems. AAAI-2017. [Alpi](#page-81-0)[ne](#page-79-0) [Ve](#page-80-0)[rifi](#page-81-0)[ca](#page-79-0)[ti](#page-80-0)[on](#page-92-0) [M](#page-93-0)[e](#page-46-0)[eti](#page-47-0)[n](#page-95-0)[g,](#page-96-0) [No](#page-0-0)[vemb](#page-98-0)er 25, 2017 81

Reasoning framework PRTL[∗]

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0) A Temporal

[Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

 $\mathbb{B}_\mathcal{A}^{\bowtie q}\psi$, belief formula, expresses that agent A believes ψ with probability in relation \bowtie with q.

 $\mathbb{CT}_{A,B}^{\bowtie q} \psi$, competence trust formula, expresses that agent A trusts agent B with probability in relation \bowtie with q on its capability of completing the task ψ

 $\mathbb{DT}_{A,B}^{\bowtie q} \psi$, disposition trust formula, expresses that agent A trusts agent B with probability in relation \bowtie with q on its willingness to do the task ψ , where the state of willingness is interpreted as unavoidably taking an intention.

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

[Deep Learning](#page-7-0)

A Temporal [Logic of Trust](#page-80-0)

[Verification in](#page-47-0)

[Conclusion](#page-96-0)

We write

$$
\begin{array}{rcl}\n\Pr^{max,min}_{\mathcal{M},A,\rho}(\psi) & \stackrel{\mathrm{def}}{=} & \sup_{\sigma_A\in \Pi_A} \inf_{\sigma_{Ags}\setminus\{A\}} \in \Pi_{\mathit{Ags}\setminus\{A\}} \Pr_{\mathcal{M},\sigma,\rho}(\psi), \\
\Pr^{min,max}_{\mathcal{M},A,\rho}(\psi) & \stackrel{\mathrm{def}}{=} & \inf_{\sigma_A\in \Pi_A} \sup_{\sigma_{Ags}\setminus\{A\}} \in \Pi_{\mathit{Ags}\setminus\{A\}} \Pr_{\mathcal{M},\sigma,\rho}(\psi)\n\end{array}
$$

to denote the strategic ability of agent A in implementing ψ on a finite path ρ . Intuitively,

- $\mathrm{Pr}^{max,min}_{\mathcal{M},A,\rho}(\psi)$ gives a lower bound on agent A 's ability to maximise probability of ψ , while
- $\mathrm{Pr}^{\mathit{min},\mathit{max}}_{\mathcal{M},A,\rho}(\psi)$ gives an upper bound on agent A 's ability to minimise probability of ψ .

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

A Temporal [Logic of Trust](#page-80-0)

For a measurable function f : $\text{FPath}^{\mathcal{M}} \rightarrow [0,1]$, we denote by $E_{\text{be}_A}[f]$ the belief-weighted expectation of f, i.e.,

$$
E_{\texttt{be}_A}[f] = \sum_{\rho \in \texttt{FPath}^{\mathcal{M}}} \texttt{be}_A(\rho) \cdot f(\rho).
$$

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

A Temporal [Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

 $\mathcal{M}, \rho \models \mathbb{B}_{\mathcal{A}}^{\bowtie q} \psi$ if

 $E_{\mathsf{be}_A}[V_{\mathbb{B},\mathcal{M},\psi}^{\bowtie}] \bowtie q,$

where the function $\iota_{\mathbb{B},\mathcal{M},\psi}^{\bowtie}:\mathrm{FPath}^{\mathcal{M}}\to[0,1]$ is such that

$$
V^{\bowtie}_{\mathbb{B},\mathcal{M},\psi}(\rho')=\left\{\begin{array}{ll} \Pr^{max,min}_{\mathcal{M},A,\rho'}(\psi) & \text{ if } \bowtie\in\{\geq,>\} \\ \Pr^{min,max}_{\mathcal{M},A,\rho'}(\psi) & \text{ if } \bowtie\in\{<,\leq\} \end{array} \right.
$$

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

A Temporal [Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

$$
\blacksquare \mathcal{M}, \rho \models \mathbb{CT}_{A,B}^{\bowtie q} \psi \text{ if }
$$

$$
E_{\mathrm{be}_A}[V_{\mathbb{CT},\mathcal{M},B,\psi}^{\bowtie}] \bowtie q,
$$

where the function $\mathsf{V}_{\mathbb{CT},\mathcal{M},B,\psi}^{\bowtie}:\mathrm{FPath}^{\mathcal{M}}\to[0,1]$ is such that $V_{\mathbb{CT},\mathcal{M},B,\psi}^{\bowtie}(\rho')=$

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ sup $\mathsf{x}\mathsf{\in }\mathsf{Int}_{\mathcal{B}}(\mathsf{last}(\rho'))$ $\mathrm{Pr}^{\textit{max}, \textit{min}}_{\mathcal{M}, A, B, i(\rho', \mathsf{x})} (\psi) \quad \text{ if } \mathbb{x} \in \{\geq, >\}$ inf $\inf_{x \in Int_B(|ast(\rho'))} \Pr^{min,max}_{{\cal M},A,B.i(\rho',x)}(\psi) \quad \text{ if } \infty \in \{<,\leq\}$

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

[Deep Learning](#page-7-0)

A Temporal [Logic of Trust](#page-80-0)

$$
\blacksquare \mathcal{M}, \rho \models \mathbb{DT}_{A,B}^{\bowtie q} \psi \text{ if }
$$

$$
E_{\mathrm{be}_A}[V^{\bowtie}_{\mathbb{DT},\mathcal{M},B,\psi}]\bowtie q,
$$

where the function $\mathsf{V}_{\mathbb{D}\mathbb{T},\mathcal{M},B,\psi}^{\bowtie}:\mathrm{FPath}^{\mathcal{M}}\to[0,1]$ is such that $V^{\bowtie}_{\mathbb{DT},\mathcal{M},B,\psi}(\rho')=$

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ inf $\inf_{x \in \text{supp}(\pi_B^i(\rho'))} \Pr_{\mathcal{M},A,B.i(\rho',x)}^{\text{max,min}}(\psi) \quad \text{ if } \infty \in \{\geq,>\}\$ sup $x\in$ supp $(\pi_B^i(\rho'))$ $\mathrm{Pr}_{\mathcal{M},A,B.i(\rho',\mathsf{x})}^{\mathsf{min},\mathsf{max}}(\psi) \quad \text{ if } \mathbb{\bowtie} \mathbb{\in } \{<,\leq\}$

Example Formulas

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

A Temporal

[Logic of Trust](#page-80-0) [Conclusion](#page-96-0)

The formula

$$
\mathbb{DT}^{\geq 0.9}_{Alice, Bob} \diamondsuit (a_{Bob} = keep)
$$

states that Alice can trust Bob with probability no less than 0.9 that he will keep the money for himself. The formula

$$
\Box(\textit{richer}_{Bob,Alice} \rightarrow P^{\geq 0.9} \Diamond \mathbb{CT}^{\geq 1.0}_{Bob,Alice}\textit{richer}_{Alice,Bob})
$$

states that, at any point of the game, if Bob is richer than Alice, then with probability at least 0.9, in future, he can almost surely, i.e., with probability 1, trust Alice on her capability of becoming richer than Bob.

Guarding Mechanism

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

Xiaowei

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

A Temporal [Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

For every agent $A \in Ags$, we define:

- a *goal guard* function $\lambda^{\rm g}_{\rm A}$ $^{\mathcal{E}}_A:\mathcal{P}(\mathit{Goal}_A)\rightarrow\mathcal{L}_{A}(\mathit{PRTL^*})$ and
- **an** intention guard function $\lambda^i_A: Int_A \times \mathcal{P}(\mathit{Goal}_A) \rightarrow \mathcal{L}_A(\mathit{PRTL}^*).$

where $\mathcal{L}_{\mathcal{A}}(\mathit{PRTL}^\ast)$ is the set of formulas of the language PRTL^{*} that are boolean combinations of atomic propositions and formulas of the form $\mathbb{B}_A^{\bowtie q} \psi$, $\mathbb{T}_{A,B}^{\bowtie q} \psi$, $\mathbb{B}_A^{\bowtie ?} \psi$ or $\mathbb{T}_{A,B}^{\bowtie ?} \psi$, such that ψ does not contain temporal operators.

Let $\Lambda = \{ \langle \lambda^g_{\beta} \rangle$ ${}_{A}^{g}, \lambda_{A}^{i} \rangle \}_{A \in Ags}$ be the *guarding mechanism*.

Pro-Attitude Synthesis

[Verification of](#page-0-0) Robotics and Autonomous **Systems**

[Deep Learning](#page-7-0)

A Temporal [Logic of Trust](#page-80-0)

Obtaining cognitive strategy $\Pi = \{\pi_{\mathcal{A}}^{\mathcal{B}}% (\theta_{\mathcal{A}}^{\mathcal{B}}% (\theta_{\mathcal{A}}^{\mathcal{B}})^{-1}$ ${}_{A}^{\mathcal{g}},\pi_{A}^{i}\}_\mathcal{A}\in \mathcal{A}_{\mathcal{G}\mathcal{S}}$ from finite structures $\Omega = \{ \langle \text{Goal}_A, \text{Int}_A \rangle \}_{A \in Ags}$ and Λ

Trust Game

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

A Temporal [Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

We recall our informal assumption that Bob's intention will be share when he is an investor and his belief in Alice being active is sufficient, and keep otherwise. We formalise it as follows:

> $\lambda_{Bob}^i(\textit{share},\{\textit{investor}\}) = \mathbb{B}_{Bob}^{>0.7}$ active $_{Alice},$ $\lambda_{Bob}^i($ keep $,$ $\{$ investor $\}) = \neg \mathbb{B}_{Bob}^{>0.7}$ active $_{Alice},$ $\lambda_{Bob}^i(\textit{share},\{\textit{opportunist}\}) = \bot,$ $\lambda_{Bob}^i(keep, \{opportunist\}) = \top,$

where $active_{Alice}$ holds in states in which Alice's goal is $active$ and we used a value 0.7 to represent Bob's belief threshold.

Trust Game

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

A Temporal [Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

We let $\rho_1 = s_0 s_1 s_3 s_8$ and $\rho_2 = s_0 s_2 s_5 s_{12}$. Recall that $obs_{Bob}(\rho_1) = obs_{Bob}(\rho_2)$ and we let o_1 denote the observation.

 $b e_{Bob}(o_1, \rho_1) = 1/7$, $b e_{Bob}(o_1, \rho_2) = 6/7$.

Trust Game

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

A Temporal [Logic of Trust](#page-80-0)

[Conclusion](#page-96-0)

Therefore, since $\mathcal{G}, \rho_1 \models \neg active_{Alice}$ and $\mathcal{G}, \rho_2 \models active_{Alice}$ (below and in what follows, $j \in \{1, 2\}$):

$$
\mathcal{G}, \rho_j \models \mathbb{B}_{Bob}^{=6/7} \textit{active}_{Alice}.
$$

Hence

 $eval_{Bob}^i(share, \{ investor\})(\rho_j) = 1,$ $eval_{Bob}^{i}$ (keep, {investor})(ρ_j) = 0,

and so:

$$
\pi_{Bob}^i(\rho_j)(share) = 1, \hspace{1cm} \pi_{Bob}^i(\rho_j)(keep) = 0.
$$

Model Checking Complexity

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

[Complexity](#page-93-0)

[Conclusion](#page-96-0)

general problem is undecidable

A few fragments have been identified to be decidable in $\mathcal{L}_{\mathcal{A}}$ e.g., PSPACE, EXPTIME, or PTIME

Trust-Enhanced AI

Traditional AI:

- [Deep Learning](#page-7-0)
-

[Verification in](#page-47-0)

[Complexity](#page-93-0)

obs & reward

Environment

action

Human

simple interaction

trust

Human-like AI

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Deep Learning](#page-7-0)

[Verification in](#page-47-0)

[Complexity](#page-93-0)

Human-like AI: enhance AI with mental module (e.g., a trust mechanism) to learn and reason about human's values (e.g., trustworthiness, morality, ethics, etc.)

[Verification of](#page-0-0) Robotics and

Conclusion

[Verification of](#page-0-0) Robotics and Autonomous Systems

[Verification in](#page-47-0)

[Verification of](#page-0-0) Robotics and **Autonomous** Systems

[Deep Learning](#page-7-0)

[Conclusion](#page-96-0)

Xiaowei Huang and Marta Kwiatkowska.

Reasoning about cognitive trust in stochastic multiagent systems.

In AAAI 2017, pages 3768–3774, 2017.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu.

Safety verification of deep neural networks.

In CAV 2017, pages 3–29, 2017.