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: Aﬂ‘% Robotics and Autonomous Systems

.

Verification of

Robotics and

Autonomous
Systems

Challenges

Robotic and autonomous systems (RAS) are interactive,

cognitive and interconnected tools that perform useful tasks in
the real world where we live and work.
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5;;‘;;;‘: Automated Verification, a.k.a. Model Checking
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“éigs Systems for Verification: Paradigm Shifting
—
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Properties

Verification of

Robotics and

Autonomous
Systems

Challenges

m dependability (or reliability)

m human values, such as trustworthiness, morality, ethics,
transparency, etc
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Verification of Deep Learning
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Human-Level Intelligence

Verification of

Robotics and

Autonomous
Systems

Xiaowei
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What can | help you with?

(%)

Deep Learning
Verification

ACCESS TO CITY
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Major problems and critiques

Verification of
Robotics and
Autonomous

Systems

Dz el m un-safe, e.g., instability to adversarial examples

Verification

m hard to explain to human users
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Human Driving vs. Autonomous Driving

Verification of

Robotics and

Autonomous
Systems

Turn Left

Go Straight

Deep Learning

Turn Right
Verification

Turn Left

Tum Right

Traffic image from “The German Traffic Sign Recognition
Benchmark”
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Deep learning verification (DLV)
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Robotics and

Autonomous
Systems

Turn Left

Go Straight

Deep Learning Pm Right

Verification

Turn Left

Image generated from our tool Deep Learning Verification (DLV) 1

IX. Huang and M. Kwiatkowska. Safety verification of deep neural
networks. CAV-2017.
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Safety Problem: Tesla incident

Verification of

Robotics and

Autonomous
Systems

Deep Learning
Verification

Joshua Brown was killed when his Tesla Model S, which was
operating in Autopilot mode, crashed into a tractor-trailer.

The car’s sensor system, against a bright spring sky, failed
to distinguish a large white 18-wheel truck and trailer
crossing the highway.
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Microsoft Chatbot

Verification of

Robotics and

Autonomous
Systems

Wk R} D] ‘echnoloy cience ulture ideo eviews

Artificial Intelligence

Microsoft's new chatbot wants
to hang out with millennials on
Twitter

Deep Learning
Verification

On 23 Mar 2016, Microsoft launched a new artificial
intelligence chat bot that it claims will become smarter the
more you talk to it.
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Microsoft Chatbot
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Artificial Intelligence

Microsoft's new chatbot wants
to hang out with millennials on
Iwitter

Deep Learning
Verification

after 24 hours ...
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Safety Problem: Microsoft Chatbot

Verification of

Robotics and

Autonomous
Systems

t‘! Ta‘yTwegls
@TayandYou

@NYCitizen07 | fucking hate feminists
and they should all die and burn in hell.

6,11:41

—
h‘ TayTweets {¥ 2 Follow

TayandYou

-

) TayTweets W Follow
g% @TayandYou
@icbydt bush did 9/11 and Hitler would have done a better job
than the monkey we have now. donald trump is the only hope
we've got.
1:27 AM - 24 Mar 2016

Deep Learning
Verification

“« 124 @121

@ReynTheo HITLER DID NOTHING WRONG!
e 5 ENdAEBCSESEX

8:44 PM - 23 Mar 2016
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Safety Problem: Microsoft Chatbot

Verification of
Robotics and
Autonomous

Systems The Telegraph HOME = NEWS | SPOF

Xiaowei

Technology

News = Reviews Opinion Internetsecurity = Social media = Apple Google

Deep Learning
Verification - Technology

Microsoft deletes 'teen girl'
Al after it became a Hitler-
loving sex robot within 24
hours
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Huang

Deep Learning
Verification

all implemented with

hidden layer 1 hidden layer 2 hidden layer 3
input layer
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Safety Definition: Deep Neural Networks

Verification of
Robotics and
Autonomous

Systems

m R” be a vector space of images (points)

m f:R"” — C, where C is a (finite) set of class labels,
Safety Definition models the human perception capability,

m a neural network classifier is a function #(x) which
approximates f(x)
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Safety Definition: Deep Neural Networks

Verification of

Robotics and

Autonomous
Systems

A (feed-forward and deep) neural network N is a tuple
(L, T,®), where

mL={Ly]| keA{0,..,n}}: asetof layers.
m 7 C L x L: aset of sequential connections between layers,

m O ={¢| ke {l,..,n}}: aset of activation functions
¢k : Dy, _, — Dy, one for each non-input layer.

Safety Definition
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Safety Definition

Xiaowei Huang (Liverpool University)

ayer | hidden bayer 2 hidden bayer 3 .

. Turn Left

~ — Go Straight

— Stop
\.
Turn Right
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Turn Left
_'/-'
~ — Go Straight
— ™ Stop
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Safety Definition: Traffic Sign Example

Verification of

Robotics and
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Systems

input layer

(o
Safety Definition N

ﬁ % |~ Go Right

| ™ Go Straight

layer 1 layer 2 layer 3 output layer
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Safety Definition: General Safety

Verification of

e [General Safety] Let nx(cy k) be a region in layer Ly of a neural
Systems .
_.yt network N such that oy x € ni(ax k). We say that N is safe for
Huang input x and region ny(cx k), written as N, 7, [= x, if for all

activations a, , in nx(ay k) we have ay n = oy p.

input layer layer1 ... layerk output layer
Safety Definition

] __y Go Right

Go Straight
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Challenges

Verification of

Robotics and

Autonomous
Systems

Challenge 1: continuous space, i.e., there are an infinite
number of points to be tested in the high-dimensional space

Challenges
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Challenges

Verification of
Robotics and
Autonomous

St Challenge 2: The spaces are high dimensional

Xiaowei

Huang

Challenges

Note: a colour image of size
32*32 has the 32*32*3 =
784 dimensions.

Note: hidden layers can
have many more dimensions
than input layer.
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Challenges

Verification of
Robotics and
Autonomous

s Challenge 3: the functions f and f are highly non-linear, i.e.,
safety risks may exist in the pockets of the spaces

Challenges

Figure: Input Layer and First Hidden Layer
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Challenges

Verification of

Robotics and

Autonomous
Systems

Challenge 4: not only heuristic search but also verification

Challenges
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Approach 1: Discretisation by Manipulations

Verification of
Robotics and

A Define manipulations 6, : Dy, — Dy, over the activations in
ystems
the vector space of layer k.

Xiaowei

Huang

Approaches

Figure: Example of a set {41, 2, 93,94} of valid manipulations in a
2-dimensional space
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ladders, bounded variation, etc

Verification of
Robotics and
Autonomous

Systems

Approaches

Figure: Examples of ladders in region n(cy «). Starting from

Ok = Qixy,k, the activations Qxy k- Ox; k form a ladder such that
each consecutive activation results from some valid manipulation d,
applied to a previous activation, and the final activation ay; k is

outside the region 7y (ax k)-
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Safety wrt Manipulations

Verification of

Robotics and

Autonomous
Systems

[Safety wrt Manipulations| Given a neural network N, an input
x and a set Ay, of manipulations, we say that N is safe for input
X with respect to the region 1, and manipulations Ay, written
as N, 7k, Ay = x, if the region nx (o k) is a O-variation for the
set L(nk(ax,k)) of its ladders, which is complete and covering.

Approaches

(=) N,nk = x (general safety) implies N,ni, Ay = x (safety
wrt manipulations).
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Minimal Manipulations

Verification of
Robotics and
Autonomous

Systems Define minimal manipulation as the fact that there does not
' exist a finer manipulation that results in a different
classification.

Approaches

(<) Given a neural network N, an input x, a region 1 (i k)
and a set Ay of manipulations, we have that N,ni, Ay = x
(safety wrt manipulations) implies N, n |= x (general safety) if
the manipulations in Ay are minimal.
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Approach 2: Layer-by-Layer Refinement

Verification of

Robotics and

Autonomous
Systems

Npkie—NmpEive—NmpEite— .. <+—Npfi

Input Layer Layer 1 Layer 2 Output Layer

Approaches

Figure: Refinement in general safety
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Approach 2: Layer-by-Layer Refinement

Verification of

Robotics and

Autonomous
Systems

Nmlie—DNmie——NmpEi+— ~—— N ki

| | |

NsﬂllAl #i"_NﬂhsAz F='i"' “_N,T}k,Ak#i

Approaches

Figure: Refinement in general safety and safety wrt manipulations
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Approach 2: Layer-by-Layer Refinement

Verification of

Robotics and

Autonomous
Systems

NmEi+—NmEi+—NmEi+— N i

T T T s e

N, Ay i +—Nm, Az =i +— — N, A =i

ATpCS Figure: Complete refinement in general safety and safety wrt
manipulations
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Approach 3: Exhaustive Search

Verification of

Robotics and

Autonomous
Systems

Objective
Function

Approaches
cnrrrunlsm

Plateau

State Space

Fig: Hill Climbing : Local Search
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Figure: exhaustive search (verification) vs. heuristic search




Approach 4: Feature Discovery

Verification of
Robotics and

T —— Natural data, for example natural images and sound, forms a
Systems high-dimensional manifold, which embeds tangled manifolds to
represent their features.

Approaches

Feature manifolds usually have lower dimension than the data
manifold, and a classification algorithm is to separate a set of
tangled manifolds.
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Approach 4: Feature Discovery

Verification of

Robotics and

Autonomous
Systems

the appearance of features is independent

L%

we can manipulate them one by one

Approaches

%

reduce the problem of size O(2¢1+-+%=) into

a set of smaller problems of size O(2%), ...,0(2%).

Xiaowei Huang (Liverpool University)  Verification of Robotics and Autonomous Sys



Experimental Results: MNIST

Verification of
Robotics and
Autonomous

Systems Image Classification Network for the MNIST Handwritten
Numbers 0 — 9

Feature Feature Feature Feature Hidden Hidden
Inputs maps. maps. maps. maps units. units. Outputs
28x28x1 26x26x32 24x24x32 12x12x32 12x12x32 4608 128 10

=

Experimental
Results

v

Convolution Convolution Max-pooling Dropout Flatten Fully Fully
3x3 kernel 3x3 kernel 2x2 kernel 1x1 kernel connected connected

Total params: 600,810
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Experimental Results: MNIST
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Experimental Results: GTSRB

Verification of
Robotics and
Autonomous

Systems Image Classification Network for The German Traffic Sign
Recognition Benchmark

Feature Feature Feature  Fealure  Fealure  Fealure  Feate  Featwe  Featwre  Featwre  Featwre  Fealure  Hidden  Hidden

Inputs maps. maps maps maps maps maps. maps maps maps. maps maps maps units units Outputs
G203 32032032 3030032 15615632 15(15x32 15xI5x64  1313x64  6xbx64  Gxbx6d  GxOx128  4xax128  22x128  22x128 512 512 a3

i I i 3 °, B

Experimental ?}\\\\
Results ; : :
v v M
Conoltin  Gonvikon  taxpods  Orpout_ Conotin Gotion et ool Dot oo Conltn Haxolg Ovpout_ Fen . Fuly
G Gnier Sgmin Do Griown Grouen lexpmns S| Sk Sl tusgests b Mhces S

Total params: 571,723
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Experimental Results: GTSRB

Verification of

Robotics and

Autonomous
Systems

Experimental

Reoulte “80m speed limit” “go right”

to “30m speed limit” to “30m speed limit” to “go straight”
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Experimental Results: GTSRB

Verification of

Robotics and r
Autonomous
Systems @

no overtaking (pro- speed limit 50 (pro- road narrows (danger)
hibitory) to go straight hibitory) to stop (other) to construction (danger)
(mandatory)

S restriction  ends no overtaking (trucks) no overtaking (pro-
(other) to speed limit 80 (prohibitory) to speed hibitory) to restriction
(prohibitory) limit 80 (prohibitory) ends (overtaking

(trucks)) (other)
priority at next intersec- uneven road (danger) to danger (danger) to
tion (danger) to speed traffic signal (danger) school crossing (danger)

limit 30 (prohibitory)
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Experimental Results: CIFAR-10

Verification of
Robotics and
Autonomous

Systems Image Classification Network for the CIFAR-10 small images

Feature Feature Feature Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps map: maps maps maps maps units. units Outputs
32x32x3 32x32x32 30x30x32 15x15x32  15x15x32  15x15x64  13X13x64  6x6X64 6x6x64 2304 512 10

[ (-

[=

Experimental
Results

M v v
Convolution  Convolution Max-pooling Dropout  Convolution Convolution Max-pooling Dropout Flatten Fully Fully
3x3 kernel 3x3 kernel 2x2 kerel Ixlkemel 3x3kemel 3x3kemel 2x2kemel 1x1 kemel connected  connected

Total params: 1,250,858
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Experimental Results: CIFAR-10

Verification of
Robotics and

Autonomous
Systems
Xiaowei
Huang
automobile to bird automobile to frog automobile to airplane automobile to horse
airplane to dog airplane to airplane to truck airplane to cat
o y y ﬁ @ : 3

truck to frog truck to cat ship to bird ship to airplane

RRIENE Y 1 2~ o+

ship to truck horse to cat horse to automobile  horse to truck
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Experimental Results: imageNet

Verification of
Robotics and e .
g Image Classification Network for the ImageNet dataset, a large
ystems . . . . . .
visual database designed for use in visual object recognition

software research.

Feature Feature Feature Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps. maps maps maps. maps. maps maps units units Outputs
32x32x3 32x32x32 30x30x32 15x15x32 15x15x32 15x15x64 13x13x64 6x6x64 6x6x64 2304 512 10
Experimental “H“\.
Results —_— - 7
] ! ol 4
v M \ \ M
Convolution Convolution Max-pooling Dropout Convolution Convolution Max-pooling Dropout Flatten Fully Fully
3x3 kernel 3x3 kernel 2x2 kernel 1x1 kernel  3x3 kernel  3x3 kernel  2x2 kernel  1x1 kernel connected connected

Total params: 138,357,544
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Experimental Results: ImageNet

Verification of

Robotics and

Autonomous
Systems

Xiaowei
Huang

Experimental
Results

boxer to rhodesian ridgeback great pyrenees to kuvasz
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Next Step: Hybrid Systems

Verification of

Robotics and

Autonomous
Systems

i Concurrent System (1980-)

Probabilistic System (1990-) Hybrid System

Huang
Environment Environment

- Logical Logical
Environment

Component Component

Logical

Experimental
<P Component

Results

Probabilistic
Component

Probabilistic
Component

Deep
Learning

Xiaowei Huang (Liverpool University)  Verification of Robotics and Autonomous Sys



Verification in human-robot interaction

Verification of

Robotics and

Autonomous
Systems

Concurrent System (1980-)

Probabilistic System (1990-) Rabotics and Autonomous System

Environment Environment

- Logical Logical
Environment

Component Component

Logical
Component

Verification in
human-robot

interaction Probabilistic
Component

Probabilistic
Component

Deep
Learning

Xiaowei Huang (Liverpool University)  Verification of Robotics and Autonomous Sys



Mental process in human

Verification of
Robotics and
Autonomous

Systems
Environment

Mental Module

7\

Visual Module

Al, including
logical component,
probabilistic component,

deep learning

Manual
Module

Motivation
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Social trust in human-robot interaction

Verification of
Robotics and

A Trust, one of the essential human mental attitude, is a critical
ystems . .
part of every human interaction.

Motivation
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Social trust in human-robot interaction

Verification of

Robotics and

Autonomous
Systems

Question: what is the level of trust Question: what is the level of trust we have
we have on a self-driving car on a self-driving car to let it make
to send our kids to the school? decision in a critical situation?

Motivation
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Tesla incident: importance of correct calibration of
trust

Verification of

Robotics and

Autonomous
Systems

Joshua Brown was killed when his Tesla Model S, which was operating in Autopilot mode,
crashed into a tractor-trailer. He was allegedly watching a movie when the incident occurs.

Motivation
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Google Car incident: importance of correct
calibration of trust

Verification of

Robotics and

Autonomous
Systems

. i .\.\
atlOnline &,
Home | News | U.S. | Sport | TV&Showbiz | Australia | Femail | Health [EEC0 Mon
Latest Headlines | Science | Pictures | Discounts

Can self-driving cars cope with
illogical humans? Google car crashed

GOOGLE éELF DRiVlNG CAR because bus driver didn't do what it
CRASHES INTO A_BUS expected

« National Highway

'Our car was making an assumption about what the other car was going to do,’
said Chris Urmson, head of Google's self-driving project, speaking at the
SXSW festival in Austin.

Motivation
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Definition of social trust

Verification of
Robotics and
Autonomous

Systems What is (social) trust?

m The willingness of a party to be vulnerable to the actions
of another party based on the expectation that the other
will perform a particular action important to the trustor,
irrespective of the ability to monitor or control that party.
[Mayer, Davis, and Schoorman 1995]

m A subjective evaluation of a truster on a trustee about
something in particular, e.g., the completion of a task.
[Hardin 2002]

Motivation
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Verification of

Robotics and

Autonomous
Systems

Stochastic
Multiplayer
Game

Stochastic Multiplayer Game

A stochastic multiplayer game (SMG) is a tuple
M= (Ags, S, Sinit, {ACtA}AeAgs, T, L), where:
m Ags = {1,...,n} is a finite set of agents,

m S is a finite set of states,
m Syt € S is a set of initial states,
m Acty is a finite set of actions for the agent A,

m T :S5xAct— D(S) is a (partial) probabilistic transition
function, where Act = X acagsActa and

m L:S— P(AP) is a labelling function mapping each state
to a set of atomic propositions taken from a set AP.
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Verification of

Robotics and

Autonomous
Systems

Stochastic
Multiplayer
Game

Path, Action Strategy, Strategy Profile, etc.

m A (history-dependent and stochastic) action strategy oa
of agent A € Ags in an SMG M is a function
oa : FPath™ — D(Acta), such that for all a4 € Acta and
finite paths p it holds that oa(p)(aa) > 0 only if
aa € ActA(last(p)).
m A strategy profile o¢ for a set C of agents is a vector of
action strategies X psccoa, one for each agent A € C.
m We let 14 be the set of agent A’s strategies, ¢ be the
set of strategy profiles for the set of agents C, and I1 be
the set of strategy profiles for all agents.
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Strategy Induced DTMC

Verification of

Robotics and

Autonomous
Systems

Given a path ps which has s as its last state, a strategy o € 1,
and a formula ¥, we write

def

Probyy s ,s(¥) = Pry{6 € IPathy(s) | M, ps, 8 = 9}

for the probability of implementing i) on a path ps when a
strategy o applies. Based on this, we define

Probf",(¥) £ infoen Probyy , ,(¥),
Stochastic PrObmaX (w) g SupUGH PrObM,U,p(w)

Multiplayer
Game
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Semantics of Probabilistic Formula

Verification of

Robotics and

Autonomous
Systems

m M, p =P if Probﬁflfgbq)(w) < g, where

min  when e {>,>}
max when e {< <}

opt(=1) = {

Stochastic
Multiplayer
Game
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+ Partial Observation

Verification of

Robotics and

Autonomous
Systems

A partially observable stochastic multiplayer game (POSMG) is
a tuple M = (Ag57 57 Sinit7 {ACtA}AGAga Ta
L7 {OA}AEAg57 {ObSA}AGAgs)'
where
[ ] (Ags, S, Sinit, {ACtA}AGAgsa T, L) is an SMG,
m O, is a finite set of observations for agent A, and

m obsp : S —> Oy is a labelling of states with observations
for agent A.

Cognitive
Mechanism
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+ Cognitive Mechanism

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Here Stochastic multiplayer game with cognitive dimension (SMGgq)
extends POSMG with

B cognitive state,
m cognitive mechanism, and
m cognitive strategy.

For an agent A, we use Goal to denote its set of goals and
Int, to denote its set of intentions.

Cognitive
Mechanism
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+ Cognitive Strategy

Verification of
Robotics and

Autonomous A stochastic multiplayer game with cognitive dimension
ystems .
(SMGgq) is a tuple M = (Ags, S, Sinit, {Acta}acags, T, L,

{Oa} acAgs, {0obsa} acags, {24} Acags, {TA} AcAgs).
where

m Qa = (Goalga, Inta) is the cognitive mechanism of agent A,
consisting of

m a legal goal function Goals : S — P(P(Goala)) and
m a legal intention function Inta : S — P(Inta), and
mTa = (75, ) is the cognitive strategy of agent A,
consisting of
= a goal strategy 74 : FPath™ — D(P(Goala)) and
Cognitivel m an intention strategy wi\ : FPath™ — D(Intn).
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Verification of
Robotics and
Autonomous

Systems

Cognitive
Mechanism

+ Cognitive Transition

In addition to the temporal dimension of transitions s—3s',
we also distinguish a cognitive dimension of transitions
s— s’, which corresponds to mental reasoning processes.

m Given a state s and a set of agent A's goals x C Goala, we
write A.g(s, x) for the state obtained from s by
substituting agent's goals with x. Similar notation
A.i(s, x) is used for intention change when x € Inta.

m Alternatively, we may write s—>’égx "if s = Ag(s,x)
contains the goal set x for A and s—>’é’x "if
s’ = A.i(s, x) contains the intention x for A.
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Running Example: Trust Game

Pl A simple trust game from [Kuipers2016], in which there are
gl two agents, Alice and Bob. At the beginning, Alice has 10
dollars and Bob has 5 dollars. If Alice does nothing, then
everyone keeps what they have. If Alice invests her money with
Bob, then Bob can turn the 15 dollars into 40 dollars. After
having the investment yield, Bob can decide whether to share

the 40 dollars with Alice. If so, each will have 20 dollars.

Otherwise, Alice will lose her money and Bob gets 40 dollars.

withholAnvest

OO

Cognitive
Mechanism
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Running Example: Trust Game

Verification of

Robotics and

Autonomous
Systems

Bob
Alice
invest | (20,20) | (0,40)
withhold | (10,5) | (10,5)

share keep

Table: Payoff of a simple trust game

Cognitive
Mechanism
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Trust Game: Previous Approach

Verification of

Robotics and

Autonomous
Systems

It is argued that the single numerical value as the payoff of the
trust game is an over-simplification. A more realistic utility
should include both the payoff and other hypotheses, including
trust.

Bob
Alics share keep
invest | (20,20+5) | (0,40-20)
withhold (10,5) (10,5)

Cognitive
Mechanism
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Trust Game: Cognitive Modelling

Verification of .
Robotics and For A||Ce, we let

Autonomous

Sysisaing m Goalpjice = {passive, active} be two goals which represent
' her attitude towards investment.

m Intpjice = {passive, active}, and

B strategy Opassive tO implement her passive intention, and
Oactive to implement her active intention.

action withhold | invest | keep | share
strateg
O passive 0.7 0.3

O active 0.1 0.9

Wiechaniem Table: Strategies for Alice
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Verification of

Robotics and

Autonomous
Systems

Cognitive
Mechanism

Trust Game: Cognitive Modelling

For Bob, we let

m Goalgyp = {investor, opportunist} be a set of goals,
m Intgop = {share, keep}, and

m let his intentions be associated with action strategies:
Oshare, iIn Which Bob shares the investment yield with Alice,
and Oeep, in which Bob keeps all the money for himself.

action withhold | invest | keep | share
strateg
O share 0.0 1.0
O keep 1.0 0.0

Table: Strategies for Bob
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Trust Game: Cognitive Modelling

Verification of

Robotics and

Autonomous
Systems

We extend the trust game G by expanding state to additionally
include cognitive state. In particular, each state can now be
represented as a tuple

(aAlice, aBob, SAlices 85Bobs [SAlice 1SBob),

such that aajice and apyp are last actions executed by agents
and gsajice C Goalajice U {L}, gsBob C Goalgop U {L},
iSalice € Intajice U {J_}, and isgep € Intgop U {J_} is the
cognitive state.

Cognitive
Mechanism
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Trust Game: Cognitive Modelling

Verification of

Robotics and

Autonomous
Systems

~< A.g{active}

A.g{passive} -

B.gf{investor} .~ ~<  B.g{opportunist} B.gfinvestor} .~ ~<  B.g{opportunist}
e N
w:0.1 0.9
Biogare ,/ BlOkeep BiOpare /  BiOkeep BiGgare / O BlOkep
’ \ / \

/ \
> 4

k:0 s:1 k:1

Cognitive X . o .
Ve e Fig. 2. Trust game with cognitive dimension

Xiaowei Huang (Liverpool University)  Verification of Robotics and Autonomous Sys



Assumptions

Verification of

Robotics and

Autonomous
Systems

m (Uniformity Assumption) ...

m (Deterministic Behaviour Assumption) An SMGq M
satisfies the Deterministic Behaviour Assumption if each
agent's cognitive state deterministically decides its
behaviour in terms of selection of its next local action. In
other words, agent's cognitive state induces a pure action
strategy that agent follows.

Cognitive
Mechanism
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+ Cognitive Modalities

Verification of
Robotics and

Autonomous The syntax of the logic, named PCTLY,, is as follows.

Systems

pu=p| ¢ oV | VY|P [ Gad | Iad [ Cadd
Y= [PV | Oy | YUy

where p € AP, A € Ags, <€ {<,<,>,>}, and g € [0,1].
m M, ps = Gag if Vx € supp(n§(ps)) 3s’ : s—>é‘g'xs’ and
M, pss' = ¢,
B M, ps =g if Vx € supp(miy(ps)) s’ € S : s—41xs
and M, pss’ E ¢,
m M, ps = Cag if Ix € Inta(s)Is’' € S : s—21*s" and
M, pss’ = .
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Example Formulas

Verification of

P P = G aiceP=%9Casjice = invest expresses that regardless
e of Alice changing her goals, the probability of her investing
in the future is no greater than 90%.

B ¢ = CpopP=C0ap., = keep states that Bob has a legal
intention which ensures that he will not keep the money as
his next action.

E ¢3 = MEIOricherA/,-CE,Bob, where richerajice Bob 1S an
atomic proposition with obvious meaning, states that Alice
can find an intention such that it is possible to eventually
reach a state where Alice has more money than Bob.
Finally, the formula

8 P4 = Lpjice IOG gop VO richerajice pob €xpresses that Alice

Cogniive can find an intention such that it is possible to reach a

state such that, for all possible Bob's goals, the game will
always reach a state in which Bob is no poorer than Alice.
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Trust Game: Cognitive Modelling

Verification of

Robotics and

Autonomous
Systems

~< A.g{active}

A.g{passive} -

B.gf{investor} .~ ~<  B.g{opportunist} B.gfinvestor} .~ ~<  B.g{opportunist}
e N
w:0.1 0.9
Biogare ,/ BlOkeep BiOpare /  BiOkeep BiGgare / O BlOkep
’ \ / \

/ \
> 4

k:0 s:1 k:1

Cognitive X . o .
Ve e Fig. 2. Trust game with cognitive dimension
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+ Preference

Verification of

(SRl An autonomous stochastic multi-agent system (ASMAS) is a

Autonomous

Systems tuple M = (Ags, S, Sinit, {Actatacags, T, L, {Oa}acags,

{obsa}acags: {Q2a}acags, {Tatacags: {Pa}acags), where pais
a set of preference functions of agent A € Ags, defined as

pa = {gpas, ipas | B € Ags and B # A},

where:

m gpag: S — D(P(Goalg)) is a goal preference function of
A over B such that, for any state s and x € P(Goalg), we
have gpa g(s)(x) > 0 only if x € Goalg(s), and

m ipag S — D(Intg) is an intention preference function of

e A over B such that, for any state s and x € Intg, we have

ipa B(s)(x) > 0 only if x € Intg(s).
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Trust Game: Preference-induced DTMC

Verification of

Robotics and

Autonomous
Systems

Agdpassive} - ~<_ Agdactive}

‘ -

B.g{investor} .~ ~. B.g{opportunist} B.g{investor} .~ S

~  B.g{opportunist}

BiOgae /O BiOkep BiOgare /O BiOkep Biogae /  BlOkeep

Cognitive
Mechanism
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Trust Game: Preference-induced DTMC

Verification of
Robotics and

Autonomous gPBob, Alice(S0) = (passive — 1/3, active — 2/3)

Systems

indicates that Bob believes Alice is more likely to be active
than passive. Setting

8PAlice,Bob(Sx) = (investor — 1/2, opportunist — 1/2),

for x € {1,2}, represents that Alice has no prior knowledge
regarding Bob’s mental attitudes. We may set

iPAlice,Bob(Sx) = (share — 3 /4, keep — 1/4)  for x € {8,12},
iPAlice,Bob(Sx) = (share — 0, keep — 1) for x € {10, 14}

Copits to indicate that Alice knows that Bob will keep the money
when he is an opportunist, but she thinks it's quite likely that
he will share his profit when he is an investor.
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Trust Game: Preference-induced DTMC

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Huang

Prajice(p1) = gPAlice,Bob(S1)(investor)
- (0 passive(S0s153) (invest) - T (s3, invest)(sg))
* iPAlice,Bob(S8)(share)
- (0share(S0S15358515)(share) - T (s1s, share)(sp4))

1 3 3 9
_E'(lio'l)'i‘(l'l)_%’
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Belief

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Huang

The belief function be : OPathy — D(FPath™) is given by

bea(0)() = PG, | U G

p' Eclass(o)

Cognitive
Mechanism
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Trust Game: Belief Computation

Verification of

Robotics and

Autonomous
Systems

Aglpassive} Agfactive}

B.gf{investor} . ~  B.g{opportunist}

\ B-i-vkeep Biogae ,/  BiOkeep B..O%hare / \ B-i-al(«p Bi.Ohare // N B-i-a'mp

g
s:1 k1 50 k0 ; : s:1

.@. @ @

\
<

Cognitive
Mechanism
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Trust Game: Belief Computation

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Huang
begos(0,01) = Prie(Cor | | G)
pEclass(o)
— Prgob( CPI)
Pr%ob( CPI ) + Pr%ob( sz)
8PBob, Alice(S0) (passive)

 8PBob,lice(S0) (Passive) + gppob, alice (o) (active)
1

3

Cognitive
Mechanism

Xiaowei Huang (Liverpool University)  Verification of Robotics and Autonomous Sys



+ Trust: A Temporal Logic of Trust 2

Verification of

Robotics and

Autonomous
Systems

The syntax of the logic PRTL* is as follows.

pu=p|—p|dVe |V | P | Gad | Tad | Cad |
B | m;ﬁ‘gw | ]D)T:‘]g
Yu=¢ | VY | Oy | YUy | OY

where p € AP, A, B € Ags, € {<,<,>,>}, and g € [0, 1].

A Temporal
Logic of Trust

2X. Huang and M. Kwiatkowska. Reasoning about cognitive trust in
stochastic multiagent systems. AAAI-2017.
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Reasoning framework PRTL*

Verification of

Robotics and

Autonomous
Systems

Bi‘qqzb, belief formula, expresses that agent A believes 1 with
probability in relation > with g.

(C']I"f%w, competence trust formula, expresses that agent A
trusts agent B with probability in relation >t with g on its
capability of completing the task

D']I"f‘éz/), disposition trust formula, expresses that agent A
trusts agent B with probability in relation 0 with g on its
willingness to do the task v, where the state of willingness is
interpreted as unavoidably taking an intention.

A Temporal
Logic of Trust
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Verification of

Robotics and

Autonomous
Systems

A Temporal
Logic of Trust

Semantics

We write

P max,min

de .
r./\/l,A,p (¢) - SUPgAeﬂA InfO'Ags\{A}EnAgs\{A} PrM,O’,p(¢)7

min,max def .
Pr_/\/LA,p (w) - meAEﬂA SupUAgs\{A}EnAgs\{A} PrM,o‘,p(¢)

to denote the strategic ability of agent A in implementing 1 on
a finite path p. Intuitively,

max,min
m Pr, 7,

MAp (V) gives a lower bound on agent A's ability to
maximise probability of ¥, while

min,max
m Pr,

MAp (1) gives an upper bound on agent A’s ability to
minimise probability of ).
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Semantics

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Huang
For a measurable function f : FPath™ — [0, 1], we denote by
Eve,[f] the belief-weighted expectation of f, i.e.,

Evealfl= ) bea(p)-f(p).

peFPath™M

A Temporal
Logic of Trust
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Semantics

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Huang | M,p ): ]B;qq'(b If

EbeA[Vﬁ?Mﬂp] > gq,

where the function Vg7, FPath™ — [0,1] is such that

Presmi(v) if bae (>, >}

Vi /) = .

A Temporal
Logic of Trust

Xiaowei Huang (Liverpool University)  Verification of Robotics and Autonomous Sys



Semantics

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Huang

s M,p = CT %0 if
EbeA[V(Ef]]T,M,B,dJ] > q,

where the function V& v g 4 FPath™ — [0,1] is such
that V&T v 5.4 (F) =

sup Prmax,m’ﬂl. ! x (Q;Z)) if e {27 >}
x€lntg(last(p’)) M,AB.i(p',x)

inf P min,max' ) £ bc <<
xelnt,gl(nlast(p')) Y M,AB.i(p ,X)(Q/)) I {<,<}

A Temporal
Logic of Trust

Xiaowei Huang (Liverpool University)  Verification of Robotics and Autonomous Sys



Semantics

Verification of

Robotics and

Autonomous
Systems

. m M,pE ]D)T:qé if

Huang

Eve[VoT A,8,0] > @,

where the function Vi3 v g 4 FPath™ — [0,1] is such
that Vi v g (P) =

XGsupiprgfri (p/))PI'Tj’)ZTBIZ(p,yx) (w) if e {2/ >}
B .

sup Prj\"/'l',"A'j';f(i(p,x)(w) if e {<, <}
xesupp(mp(p'))

A Temporal
Logic of Trust
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Example Formulas

Verification of

Robotics and

Autonomous
Systems

The formula
>0.9
DT Zjice, 8ob<(aBob = keep)

states that Alice can trust Bob with probability no less than 0.9
that he will keep the money for himself. The formula

: >0.9 >1.0 :
D(rlcherBobA/,-ce — P= OCTEOb,A/ice”CherA/ice,Bob)

states that, at any point of the game, if Bob is richer than
Alice, then with probability at least 0.9, in future, he can
almost surely, i.e., with probability 1, trust Alice on her
capability of becoming richer than Bob.

A Temporal
Logic of Trust
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Guarding Mechanism

Verification of

Robotics and

Autonomous
Systems

For every agent A € Ags, we define:
m a goal guard function X§ : P(Goala) — La(PRTL*) and
®m an intention guard function

Xy o Inta x P(Goala) — LA(PRTL").

where LA(PRTL*) is the set of formulas of the language

PRTL* that are boolean combinations of atomic propositions

and formulas of the form quzb, ’]I":':,’g , ]BDA“?@[) or ']I‘[/):’?Bwv such

that 1 does not contain temporal operators.

m Let A = {(X§, \}})} acags be the guarding mechanism.

A Temporal
Logic of Trust
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Pro-Attitude Synthesis

Verification of

Robotics and

Autonomous
Systems

Xiaowei

Huang

Obtaining cognitive strategy I = {Wi,?‘(/’.q}AeAgs from finite
structures Q = {(Goala, Inta)} acags and A

A Temporal
Logic of Trust
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Trust Game

Verification of
Robotics and
Autonomous

Systems We recall our informal assumption that Bob's intention will be
> share when he is an investor and his belief in Alice being active
is sufficient, and keep otherwise. We formalise it as follows:

Niop(share, {investor} Bgt',?activeA/,-ce,

Ngop(keep, {investor}) = —B3% activeaice,

Niop(share, {opportunist}

~— ~— ~—~ ~—
H

Niop(keep, {opportunist}

where activeajice holds in states in which Alice's goal is active
and we used a value 0.7 to represent Bob’s belief threshold.

A Temporal
Logic of Trust
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Trust Game

el We let p; = sps1s53s3 and po = spspsssi2. Recall that

Robotics and

Autonomous obspop(p1) = obsgop(p2) and we let o1 denote the observation.

Systems

bepop(01,p1) = 1/7, bepop(01,p2) = 6/7.
A.g.{pm:n’e'}- - ~ -{K.g.{uctlve;
Bgfinvestor} . * *._ Bgfopportunist} B.g.{mvtslur]’ P > _ Biglopportunist}

\ Ea%p BiGhare // \ Bumm

iOuhare [,/ N . Oy Loy K ’/
’ \ ’
/ \ G
k:0 51 ki1 : 50 kO rO
A Temporal
ONOXO @@ (=) . @ OXOIO .
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Trust Game

Verification of
Robotics and

JUESeRei  Therefore, since G, p1 = —activeajice and G, p2 [ activeajice
SN (below and in what follows, j € {1,2}):

=6/7 .
g,pj = ]B%Boé activepjice-
Hence

evalls,,(share, {investor})(p;) =

)

1
eval,,(keep, {investor})(p;) = 0,

and so:

ﬂ—iBob(pj)(Share) = 17 7r’.Bob(pj')(keep) =0.

A Temporal
Logic of Trust
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Model Checking Complexity

Verification of

Robotics and

Autonomous
Systems

m general problem is undecidable

m A few fragments have been identified to be decidable in
e.g., PSPACE, EXPTIME, or PTIME

Complexity
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Trust-Enhanced Al

Verification of

Robotics and

Autonomous
Systems

Complexity
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Human-like Al

Verification of

Robotics and

Autonomous
Systems

Environment Environment

<——| Truston Al

|:> [ i Mental Module: i
|

Trust Mechanism

+——| Trust on Human

Human-like Al: enhance Al with mental module (e.g., a trust
mechanism) to learn and reason about human’s values (e.g.,
trustworthiness, morality, ethics, etc. )

Complexity
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Verification of

Robotics and

Autonomous
Systems

Concurrent System (1980-)

Probabilistic System (1990-) Rabotics and Autonomous System

Environment Environment
Logical Logical
Component Component

Probabilistic
Component

Environment

Logical
Component

Probabilistic
Component

Deep

- 4
Learning

Conclusion
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Verification of

Robotics and

Autonomous
Systems

Please make sure |
am doing things
right.

Huang

Thank You

Conclusion
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Verfication of [§ Xiaowei Huang and Marta Kwiatkowska.
Autonomous Reasoning about cognitive trust in stochastic multiagent
ystems
systems.

In AAAI 2017, pages 3768-3774, 2017.

ﬁ Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min
Wau.
Safety verification of deep neural networks.

In CAV 2017, pages 3-29, 2017.
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